Вывести на печать

Спирты и простые эфиры. Одноатомные спирты имеют общую формулу R–OH, представляющую углеводород, в котором водород заменен гидроксильной группой. Далее они могут быть подразделены на первичные RCH2OH, вторичные RRўCHOH и третичные спирты, RRўRўўCOH, в зависимости от того, одна, две или три алкильные группы присоединены к углероду, несущему гидроксильную группу.

Низшие спирты находят широкое применение в промышленности в качестве растворителей и как промежуточные вещества для синтеза. Метанол (т. кип. 64,7° С) получают взаимодействием CO и H2 при высоком давлении над хромо-цинковым оксидным катализатором при 350–400° С. Этанол (обычный этиловый спирт, т. кип. 78,3° С) традиционно получают сбраживанием сахара или крахмала в присутствии дрожжей, хотя некоторое количество его производят путем поглощения этилена серной кислотой с последующим гидролизом образующейся этилсерной кислоты C2H5OSO3H водой. Оба процесса дают разбавленные спиртовые растворы, из которых получают перегонкой поступающий в продажу 95%-й спирт. Изопропиловый спирт (пропанол-2, т. кип. 82,3° С) обычно делают сернокислотным методом из пропилена CH3CH=CH2, побочного продукта производства бензина крекингом. Он находил некоторое применение как заменитель этанола в качестве растворителя и в спиртовых растираниях. Некоторые из высших спиртов, например 2-этилгексанол-1 (или «612»), действуют на насекомых как репелленты.

Общие методы лабораторного получения спиртов включают а) гидролиз алкилгалогенидов; б) гидратацию олефинов в присутствии минеральных кислот, например описанным выше сернокислотным методом; в) действие реактивов Гриньяра RMgX на альдегиды Rў–CHO и кетоны Rў–CO–Rўў. Формальдегид дает первичные спирты, альдегиды – вторичные спирты, а кетоны – третичные:

Спирты обнаруживают свойства очень слабых кислот. Водород гидроксильной группы в спиртах несколько менее кислый, чем водород воды. Он может быть замещен на активные металлы с образованием алкоголятов:

Эта реакция легче всего протекает с первичными спиртами и медленнее – с третичными. Na реагирует очень медленно с трет-бутиловым спиртом, но K (более активный) реагирует быстро. Вообще реакции спиртов, в которых рвется OH-связь, легче всего протекают с первичными спиртами и медленнее всего – с третичными.

Сложные эфиры можно получить следующим образом:

Образование сложных эфиров по первым двум из этих реакций идет быстро и необратимо и, как правило, не требует катализаторов (хотя обычно к реакционной смеси прибавляют такие основания, как пиридин или триэтиламин, которые связывают образующиеся кислоты в виде солей). Третий метод основан на обратимой равновесной реакции и требует катализатора, обычно кислоты (этерификация по Фишеру). Так, реакцию можно заставить протекать слева направо (гидролиз), если использовать избыток спирта и удалять воду по мере ее образования. Ни один из трех указанных выше методов не применим к третичным спиртам.

Спирты, однако, амфотерны и в присутствии сильных кислот ведут себя как очень слабые основания:

Способность к замещению группы –OH в этой и других реакциях убывает от третичных к первичным спиртам. В присутствии таких дегидратирующих агентов, как серная или фосфорная кислота, при более низких температурах из спиртов образуются простые эфиры R–O–R, тогда как при более высоких температурах путем отщепления воды получаются олефины. Этот метод не годится для получения простых эфиров из вторичных спиртов, а с третичными дает только олефины. Дегидратация спиртов с образованием олефинов может быть осуществлена каталитически в паровой фазе над такими оксидами металлов, как оксид алюминия.

Окисление спиртов можно осуществить при помощи сильных окислителей (хромовая или азотная кислота). Продукты окисления различны по своей природе для первичных, вторичных и третичных спиртов. Так, первичные спирты сначала окисляются в альдегиды, которые, если их немедленно не удалить из окислительной среды, окисляются далее до кислот:

Вторичные спирты окисляются до устойчивых кетонов RCORў, тогда как третичные спирты окисляются только очень сильными окислителями, расщепляющими молекулу на кислоты и кетоны с меньшим числом углеродных атомов.

назад   дальше



ХИМИЯ ОРГАНИЧЕСКАЯ
I. КЛАССЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
А. УГЛЕВОДОРОДЫ
Алифатические и алициклические
Насыщенные и ненасыщенные углеводороды
Ароматические углеводороды
Свойства
Практически важные углеводороды
Метан
Сырая нефть
Циклопропан
Этилен
Пропилен
Бутадиен и стирол
Бензол
Нафталин
Ацетилен
Б. ОРГАНИЧЕСКИЕ ГАЛОГЕНИДЫ
Практически важные органические галогениды
Тетрахлорид углерода
Хлороформ
Трихлорэтилен
Дихлордифторметан
Тетрафторэтилен
Хлоропрен
Винилхлорид
Метилбромид
В. СПИРТЫ
Практически важные спирты
Метиловый спирт
Этиловый спирт
Изопропиловый спирт
Бутиловый спирт
Сивушное масло
Этиленгликоль
Глицерин
Ментол
Гераниол
Стерины
Г. ФЕНОЛЫ
Практически важные фенолы
Фенол
Креозот
Нафтолы
Гидрохинон
Эвгенол и тимол
Ванилин
Д. КАРБОНОВЫЕ КИСЛОТЫ
Практически важные карбоновые кислоты
Муравьиная кислота
Уксусная кислота
Масляная кислота
Стеариновая кислота
Жирные кислоты
Адипиновая кислота
Молочная кислота
Лимонная кислота
Винная кислота
Е. АЛЬДЕГИДЫ И КЕТОНЫ
Практически важные альдегиды и кетоны
Формальдегид
Ацетон
Акролеин
Бензохинон
Камфора
Ж. ПРОСТЫЕ ЭФИРЫ
Практически важные простые эфиры
Диэтиловый эфир
Этиленоксид
З. СЛОЖНЫЕ ЭФИРЫ
Практически важные сложные эфиры
Этилацетат
Амилацетат
Фруктовые эфиры
Винилацетат
И. АМИНЫ
Практически важные амины
Триметиламин
Анилин
Адреналин, амфетамин (бензедрин) и эфедрин
Аминокислоты
К. ДРУГИЕ ФУНКЦИОНАЛЬНЫЕ ГРУППЫ
Азотсодержащие группы
Соединения серы
Другая классификация
II. МОЛЕКУЛЯРНАЯ СТРУКТУРА
А. ХИМИЧЕСКИЕ СВЯЗИ УГЛЕРОДА
Ароматические системы
Стабильность циклических систем
Таутомерия
Другие быстрые равновесия
Б. ИЗОМЕРИЯ
Изомерия углеродной цепи
Изомерия функциональных групп
Изомерия положения
Геометрическая изомерия
Оптическая изомерия
III. НОМЕНКЛАТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
Система ИЮПАК
Производные бензола
Промежуточные частицы
IV. РЕАКЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
Классификация органических соединений
IV-1. АЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
А. МОНОФУНКЦИОНАЛЬНЫЕ СОЕДИНЕНИЯ
1. С1–: металлоорганические соединения
2. С0: углеводороды
Парафиновые углеводороды (алканы)
Олефины (алкены)
Ацетилены
3. Окислительное состояние С+
Алкилгалогениды
Спирты и простые эфиры
Амины
Нитросоединения
Меркаптаны, тиоэфиры и получаемые из них сернистые производные
4. С2+: альдегиды и кетоны
Получение
Окисление
Восстановление
Полимеризация
Альдольная конденсация
Реакции присоединения по карбонилу
Ацетали
Галогенирование
5. С3+: карбоновые кислоты и их производные
Нахождение в природе
Получение
Эфиры: жиры и воски
Другие производные кислот: амиды и ангидриды
6. С4+: производные угольной кислоты
Эфиры угольной и хлоругольной кислот
Ксантаты
Производные карбаминовой кислоты
Производные циановой и тиоциановой кислот
Б. ПОЛИФУНКЦИОНАЛЬНЫЕ СОЕДИНЕНИЯ
1. Многоатомные спирты и их производные
Гликоли
Глицерин
2. Гидроксиальдегиды и кетоны
a-Гидроксикарбонильные соединения
b-Гидроксикарбонильные соединения
3. Дикарбонильные соединения
a-Дикарбонильные соединения
b-Дикетоны
g-Дикетоны
4. Кислоты, содержащие еще одну функциональную (некарбоксильную) группу
Галогенокислоты
Гидроксикислоты (оксокислоты)
Аминокислоты
5. Кетокислоты (оксокислоты, альдегидокислоты)
a-Кетокислоты
b-Кетокислоты
6. Дикарбоновые кислоты
Щавелевая кислота
Малоновая кислота
Янтарная кислота
Глутаровая кислота
Адипиновая кислота
Ненасыщенные дикарбоновые кислоты
Гидрокси- (окси-) и кетодикарбоновые кислоты
7. Трикарбоновые кислоты
Трикарбаллиловая кислота
Лимонная кислота
IV-2. АЛИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
А. МОНОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
1. Синтез
2. Расширение и сужение цикла
3. Стереоизомерия
4. Реакции
5. Природные производные циклопентана
6. Природные производные циклогексана
Терпены
Полигидроксипроизводные циклогексана
7. Макроциклические системы
Б. БИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
1. Бициклические терпены
Декалин и сесквитерпены
В. ПОЛИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
IV-3. АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ
Главные ароматические углеводороды каменноугольной смолы
Резонанс в ароматических системах
А. АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ БЕНЗОЛЬНОГО РЯДА
1. Углеводороды бензольного ряда
Получение
Реакции
2. Замещенные бензола
Номенклатура
Галогенопроизводные
Нитросоединения
Ароматические амины
Фенолы
Ароматические спирты
Ароматические альдегиды
Ароматические кетоны
Ароматические кислоты
Сульфокислоты
Б. АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ НАФТАЛИНОВОГО РЯДА
1. Синтез a- и b-замещенных производных нафталина
2. Реакции замещения производных нафталина
В. ПРОИЗВОДНЫЕ МНОГОЯДЕРНЫХ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ
1. Антрацен и его производные
2. Фенантрен и его производные
3. Высшие многоядерные углеводороды
IV-4. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
А. ПЯТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ
1. Один гетероатом
2. Два гетероатома
3. Три и более гетероатомов
Б. ШЕСТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ
1. Один гетероатом
2. Два гетероатома
В. КОНДЕНСИРОВАННЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СИСТЕМЫ
Г. ПРАКТИЧЕСКИ ВАЖНЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Фуран
Кумарон
Тиофен
Индол
Оксазол
Изоксазол
Тиазол
Имидазол
Пиразол
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
29/03/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!