Вывести на печать

МАТЕМАТИЧЕСКИЙ АНАЛИЗ, раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела.

Начало математическому анализу положил в 1665 И.Ньютон и (около 1675) независимо от него Г.Лейбниц, хотя важную подготовительную работу провели И.Кеплер (1571–1630), Ф.Кавальери (1598–1647), П.Ферма (1601–1665), Дж.Валлис (1616–1703) и И.Барроу (1630–1677).

Чтобы сделать изложение более живым, мы будем прибегать к языку графиков. Поэтому читателю, возможно, будет полезно заглянуть в статью АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, прежде чем приступать к чтению данной статьи.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Касательные. На рис. 1 показан фрагмент кривой y = 2xx2, заключенный между x = –1 и x = 3. Достаточно малые отрезки этой кривой выглядят прямыми. Иначе говоря, если Р – произвольная точка этой кривой, то существует некоторая прямая, проходящая через эту точку и являющаяся приближением кривой в малой окрестности точки Р, причем чем меньше окрестность, тем лучше приближение. Такая прямая называется касательной к кривой в точке Р. Основная задача дифференциального исчисления заключается в построении общего метода, позволяющего находить направление касательной в любой точке кривой, в которой касательная существует. Нетрудно представить себе кривую с резким изломом (рис. 2). Если Р – вершина такого излома, то можно построить аппроксимирующую прямую PT1 – справа от точки Р и другую аппроксимирующую прямую РТ2 – слева от точки Р. Но не существует единственной прямой, проходящей через точку Р, которая одинаково хорошо приближалась к кривой в окрестности точки P как справа, так и слева, следовательно касательной в точке P не существует.

(5.37 Кб) (4.39 Кб)

На рис. 1 касательная ОТ проведена через начало координат О = (0,0). Угловой коэффициент этой прямой равен 2, т.е. при изменении абсциссы на 1 ордината увеличивается на 2. Если x и y – координаты произвольной точки на ОТ, то, удаляясь от О на расстояние х единиц вправо, мы удаляемся от О на 2y единиц вверх. Следовательно, y/x = 2, или y = 2x. Это уравнение касательной ОТ к кривой y = 2xx2 в точке О.

Необходимо теперь объяснить, почему из множества прямых, проходящих через точку О, выбрана именно прямая ОТ. Чем же прямая с угловым коэффициентом 2 отличается от других прямых? Существует один простой ответ, и нам трудно удержаться от искушения привести его, используя аналогию с касательной к окружности: касательная ОТ имеет с кривой только одну общую точку, тогда как любая другая невертикальная прямая, проходящая через точку О, пересекает кривую дважды. В этом можно убедиться следующим образом.

Поскольку выражение y = 2xx2 можно получить вычитанием х2 из y = 2x (уравнения прямой ОТ), то значения y для графика оказываются меньше знаний y для прямой во всех точках, за исключением точки x = 0. Следовательно, график всюду, кроме точки О, расположен ниже ОТ, и эта прямая и график имеют только одну общую точку. Кроме того, если y = mx – уравнение какой-нибудь другой прямой, проходящей через точку О, то обязательно найдутся две точки пересечения. Действительно, mx = 2xx2 не только при x = 0, но и при x = 2 – m. И только при m = 2 обе точки пересечения совпадают. На рис. 3 показан случай, когда m меньше 2, поэтому справа от О возникает вторая точка пересечения.

(4.99 Кб)

То, что ОТ – единственная невертикальная прямая, проходящая через точку О и имеющая с графиком лишь одну общую точку, не самое главное ее свойство. Действительно, если мы обратимся к другим графикам, то вскоре выяснится, что отмеченное нами свойство касательной в общем случае не выполняется. Например, из рис. 4 видно, что вблизи точки (1,1) график кривой y = x3 хорошо аппроксимируется прямой РТ, имеющей однако, с ним более одной общей точки. Тем не менее, нам хотелось бы считать РТ касательной к этому графику в точке Р. Поэтому необходимо найти какой-то иной способ выделения касательной, чем тот, который так хорошо послужил нам в первом примере.

(3.52 Кб)

Предположим, что через точку О и произвольную точку Q = (h,k) на графике кривой y = 2xx2 (рис. 5) проведена прямая (называемая секущей). Подставляя в уравнение кривой значения x = h и y = k, получаем, что k = 2hh2, следовательно, угловой коэффициент секущей равен

(4.34 Кб)

При очень малых h значение m близко к 2. Более того, выбирая h достаточно близким к 0, мы можем сделать m сколь угодно близким к 2. Можно сказать, что m «стремится к пределу», равному 2, когда h стремится к нулю, или что предел m равен 2 при h, стремящемся к нулю. Символически это записывается так:

Тогда касательная к графику в точке О определяется как прямая, проходящая через точку О, с угловым коэффициентом, равным этому пределу. Такое определение касательной применимо в общем случае.

Покажем преимущества этого подхода еще на одном примере: найдем угловой коэффициент касательной к графику кривой y = 2xx2 в произвольной точке P = (x,y), не ограничиваясь простейшим случаем, когда P = (0,0).

Пусть Q = (x + h, y + k) – вторая точка на графике, находящаяся на расстоянии h справа от Р (рис. 6). Требуется найти угловой коэффициент k/h секущей PQ. Точка Q находится на расстоянии

(5.58 Кб)

над осью х.

Раскрывая скобки, находим:

Вычитая из этого уравнения y = 2xx2, находим расстояние по вертикали от точки Р до точки Q:

Следовательно, угловой коэффициент m секущей PQ равен

Теперь, когда h стремится к нулю, m стремится к 2 – 2x; последнюю величину мы и примем за угловой коэффициент касательной PT. (Тот же результат получится, если h принимает отрицательные значения, что соответствует выбору точки Q слева от P.) Заметим, что при x = 0 полученный результат совпадает с предыдущим.

Выражение 2 – 2x называется производной от 2xx2. В старину производную также называли «дифференциальным отношением» и «дифференциальным коэффициентом». Если выражением 2xx2 обозначить f(x), т.е.

то производную можно обозначить

Для того, чтобы узнать угловой коэффициент касательной к графику функции y = f(x) в какой-нибудь точке, необходимо подставить в f ў(x) соответствующее этой точке значение х. Таким образом, угловой коэффициент f ў(0) = 2 при х = 0, f ў(0) = 0 при х = 1 и f ў(2) = –2 при х = 2.

Производную также обозначают у ў, dy/dx, Dхy и Dу.

Тот факт, что кривая y = 2xx2 вблизи данной точки практически неотличима от ее касательной в этой точке, позволяет говорить об угловом коэффициенте касательной как об «угловом коэффициенте кривой» в точке касания. Такие образом, мы можем утверждать, что угловой коэффициент рассматриваемой нами кривой имеет в точке (0,0) угловой коэффициент 2. Можно также сказать, что при x = 0 скорость изменения y относительно x равна 2. В точке (2,0) угловой коэффициент касательной (и кривой) равен –2. (Знак минус означает, что при возрастании x переменная y убывает.) В точке (1,1) касательная горизонтальна. Мы говорим, что кривая y = 2xx2 имеет в этой точке стационарное значение.

дальше



МАТЕМАТИЧЕСКИЙ АНАЛИЗ
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
Касательные
Максимумы и минимумы
Приложения
Производные
Линейные аппроксимации
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
Площади
Основная теорема
Объемы
Первообразные
Функции двух переменных
Частные производные
Более строгое обоснование математического аппарата
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
15/12/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!