Вывести на печать

Линейные аппроксимации. То обстоятельство, что, зная производную, мы можем во многих случаях заменить график функции вблизи некоторой точки ее касательной в этой точке, имеет огромное значение, поскольку с прямыми легче работать.

Эта идея находит непосредственное приложение в вычислении приближенных значений функций. Например, довольно трудно вычислить значение при x = 1,033. Но можно воспользоваться тем, что число 1,033 близко к 1 и что . Вблизи x = 1 мы можем заменить график кривой касательной, не совершая при этом сколько-нибудь серьезной ошибки. Угловой коэффициент такой касательной равен значению производной (x1/3)ў = (1/3)x–2/3 при x = 1, т.е. 1/3. Так как точка (1,1) лежит на кривой и угловой коэффициент касательной к кривой в этой точке равен 1/3, уравнение касательной имеет вид

или

На этой прямой при х = 1,033

Полученное значение y должно быть очень близко к истинному значению y; и, действительно, оно лишь на 0,00012 больше истинного. В математическом анализе разработаны методы, позволяющие повышать точность такого рода линейных приближений. Эти методы обеспечивают надежность наших приближенных вычислений.

Только что описанная процедура наводит на мысль об одном полезном обозначении. Пусть P – точка, соответствующая на графике функции f переменной х, и пусть функция f(x) дифференцируема. Заменим график кривой вблизи точки Р касательной к нему, проведенной в этой точке. Если х изменить на величину h, то ордината касательной изменится на величину hЧf ў(x). Если h очень мало, то последняя величина служит хорошим приближением к истинному изменению ординаты y графика. Если вместо h мы напишем символ dx (это не произведение!), а изменение ординаты y обозначим dy, то получим dy = f ў(x)dx, или dy/dx = f ў(x) (см. рис. 11). Поэтому вместо Dy или f ў(x) для обозначения производной часто используется символ dy/dx. Удобство этого обозначения зависит главным образом от явного появления цепного правила (дифференцирования сложной функции); в новых обозначениях эта формула выглядит следующим образом:

(5.95 Кб)

где подразумевается, что у зависит от u, а u в свою очередь зависит от х.

Величина dy называется дифференциалом у; в действительности она зависит от двух переменных, а именно: от х и приращения dx. Когда приращение dx очень мало, величина dy близка к соответствующему изменению величины y. Но предполагать, что приращение dx мало, нет необходимости.

Производную функции y = f(x) мы обозначили f ў(x) или dy/dx. Часто оказывается возможным взять производную от производной. Результат называется второй производной от f (x) и обозначается f ўў(x) или d 2y/dx2. Например, если f(x) = x3 – 3x2, то f ў(x) = 3x2 – 6x и f ўў(x) = 6x – 6. Аналогичные обозначения используются и для производных более высокого порядка. Однако, чтобы избежать большого количества штрихов (равного порядку производной) четвертую производную (например) можно записать как f (4)(x), а производную n-го порядка как f (n)(x).

Можно показать, что кривая в точке выпукла вниз, если вторая производная положительна, и выпукла вверх, если вторая производная отрицательна.

Если функция имеет вторую производную, то изменение величины y, соответствующее приращению dx переменной х, можно приближенно вычислить по формуле

Это приближение, как правило, лучше, чем то, которое дает дифференциал fў(x)dx. Оно соответствует замене части кривой уже не прямой, а параболой.

Если у функции f(x) существуют производные более высоких порядков, то

Остаточный член имеет вид

где x – некоторое число между x и x + dx. Приведенный выше результат называется формулой Тейлора с остаточным членом. Если f(x) имеет производные всех порядков, то обычно Rn ® 0 при n ® Ґ.

назад   дальше



МАТЕМАТИЧЕСКИЙ АНАЛИЗ
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
Касательные
Максимумы и минимумы
Приложения
Производные
Линейные аппроксимации
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
Площади
Основная теорема
Объемы
Первообразные
Функции двух переменных
Частные производные
Более строгое обоснование математического аппарата
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
23/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!