Вывести на печать

Интеграл Даниеля. Другой подход к определению интеграла был предложен П.Даниелем в 1917. С тех пор и этот подход стал предметом многочисленных обобщений. Основная идея Даниеля состоит в формальном определении интеграла в терминах его свойств как функции подынтегрального выражения. Ключевыми являются такие свойства как линейность (), монотонность (если f Ј g, то ) ), монотонность (если f ® g, в каком-то принятом смысле, то ).

Один из вариантов подхода Даниеля заключается в следующем. Рассмотрим ступенчатую функцию на некотором заданном интервале действительной оси. (Ступенчатой называется функция, постоянная на каждом из конечного множества интервалов, в силу чего ее график напоминает ступени лестницы.) Каждой ступенчатой функции f поставим в соответствие число I(f); потребуем, чтобы функция I была линейной, монотонной и непрерывной (предположим, что I(af + bg) = aI(f) + bI(g) для любых ступенчатых функций f и g и любых чисел a и b). Потребуем также, чтобы I(f) Ј I(g), если f Ј g, и чтобы I(fn) ® I(f), если ступенчатые функции fn монотонно стремятся к ступенчатой функции f. Пусть M – наименьший класс функций на выбранном интервале, содержащий все ступенчатые функции и замкнутый относительно операции взятия монотонных пределов. Назовем M – классом измеримых функций. Можно показать, что существует единственное расширение функции I с множеством ступенчатых функций на весь класс M, которое остается линейным, монотонным и непрерывным на M. Этот расширенный оператор, который переводит функцию в число, называется интегралом.

В подходе Даниеля интеграл рассматривается всего лишь как функция подынтегрального выражения, поэтому в результате мы получаем интеграл от f, но о том, по какому множеству проводится интегрирование, ничего не говорится. Если в теории Даниеля и приходится по чему-нибудь интегрировать, так это по всему базисному интервалу, и то, что в теории Лебега называлось бы интегралом от f по E, в теории Даниеля есть интеграл от f, умноженный на функцию, равную I на E и 0 вне E.

Интеграл Даниеля определяется без использования меры, однако с его помощью можно получить саму теорию меры. Различие состоит в том, что здесь мера выводится из интеграла, а не наоборот. Допустим, что некоторый класс измеримых функций и интеграл могут быть определены указанным выше образом. Множество E из базового интервала считается измеримым, если его характеристическая функция (функция, равная I на E и 0 вне E) принадлежит классу измеримых функций. Тогда меру множества E можно определить как интеграл от характеристической функции множества E. Таким образом, в подходе Даниеля возникает вся та теория, которая в другом порядке развертывается в подходе Лебега.

Наконец, следует отметить, что на множестве ступенчатых функций может быть задано много различных линейных, монотонных, непрерывных функционалов, каждый из которых приводит к другому понятию интеграла и последующему понятию меры. Но если за I(f) принять площадь под графиком функции f, то подход Даниеля просто воспроизводит интеграл Лебега и меру Лебега.

назад   дальше



ФУНКЦИЙ ТЕОРИЯ
ФУНКЦИИ ДЕЙСТВИТЕЛЬНОГО ПЕРЕМЕННОГО
МЕРА И ИНТЕГРИРОВАНИЕ
Теория Лебега
Основные предельные теоремы
Аксиоматический подход
Построение внешних мер
Дифференцирование
Интеграл Даниеля
ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО
КЛАССИЧЕСКАЯ ТЕОРИЯ
СОВРЕМЕННАЯ ТЕОРИЯ
ПРИЛОЖЕНИЯ
В естественных науках
В чистой математике
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
23/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!