Вывести на печать

ПРИЛОЖЕНИЯ

В естественных науках. Аналитические функции широко используются в некоторых областях науки и техники просто потому, что дают в руки исследователя удобный математический аппарат. Ч.Штейнметц (1865–1923) был первым, кто привлек внимание инженеров-электриков к тем практическим преимуществам, которые дают комплексные функции при рассмотрении проблем, связанных с переменным током. Аналогично, для упрощения процедуры решения линейных дифференциальных уравнений, возникающих в электротехнике и механике, О.Хевисайд (18501925) ввел формальное операционное исчисление, которое ныне вытеснено преобразованиями Лапласа и Фурье, представляющих частные случаи интегрального представления Коши из теории аналитических функций. В связи с этим при вычислении несобственных действительных интегралов, часто возникающих в практических проблемах, широко используется теория вычетов Коши.

Более основательный вклад был внесен теорией аналитических функций в гидродинамику и теорию теплопроводности. Первая точка соприкосновения – связь с понятием гармонической функции. Если функция F аналитична в области D и F(z) = u + iv, то дифференцируя уравнения КошиРимана (7), нетрудно убедиться в том, что u и v – решения дифференциального уравнения Лапласа в частных производных

Любое решение уравнения (13) в области D называется функцией, гармонической в D. Таким образом, действительная (или мнимая) часть любой аналитической функции – функция, гармоническая всюду. Наоборот, если H – любая функция, гармоническая в односвязной области D, то она является действительной частью некоторой комплексной функции F, аналитичной в D.

Дифференциальное уравнение типа (13) возникает во многих задачах в различных областях науки и техники. Оно является математической формулировкой закона о распределении температуры в неравномерно нагретом теле. Левая часть этого уравнения входит в так называемое волновое уравнение, играющее фундаментальную роль в теории колебаний. Неудивительно, что прикладные математики широко используют методы теории функций комплексного переменного для решения своих задач.

В гидродинамике теория функций комплексного переменного используется для решения задач, связанных со установившимся плоско-параллельным течением несжимаемой безвихревой жидкости. Вектор скорости такой жидкости в точке (x, y) можно записать в виде a(x,y) + ib(x,y); в силу природы течения существует гармоническая функция u, такая, что

Функция u называется потенциалом скоростей течения. Соответствующая аналитическая функция F называется комплексным потенциалом скоростей, ее действительная часть совпадает с u. Пользуясь конформными отображениями, такую функцию можно использовать для описания линий тока при обтекании сложного профиля, погруженного в движущуюся жидкость. В аэродинамике изучение обтекания привело к открытию закона образования подъемной силы крыла самолета.

назад   дальше



ФУНКЦИЙ ТЕОРИЯ
ФУНКЦИИ ДЕЙСТВИТЕЛЬНОГО ПЕРЕМЕННОГО
МЕРА И ИНТЕГРИРОВАНИЕ
Теория Лебега
Основные предельные теоремы
Аксиоматический подход
Построение внешних мер
Дифференцирование
Интеграл Даниеля
ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО
КЛАССИЧЕСКАЯ ТЕОРИЯ
СОВРЕМЕННАЯ ТЕОРИЯ
ПРИЛОЖЕНИЯ
В естественных науках
В чистой математике
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
29/03/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!