Вывести на печать

Системы уравнений. В некоторых задачах требуется найти одновременно несколько чисел, для чего необходимо решить несколько уравнений. Предположим, например, что возраст Джона и удвоенный возраст Мэри вместе составляют 32 года, а если бы Джон был вдвое старше, а Мэри на четыре года младше, то им вместе было бы 24 года. Сколько лет Джону и Мэри? Обозначим возрасты Джона и Мэри любыми буквами, например, соответственно j и m. Тогда первое утверждение относительно возрастов можно записать в виде

а второе – в виде

или после упрощения как

Когда два (или больше) числа удовлетворяют двум, как в данном случае, или большему числу уравнений, говорят, что эти числа удовлетворяют системе уравнений. Существуют несколько методов решения систем уравнений. В нашей задаче уравнение (1) (его правую и левую части) можно умножить на 2:

Уравнение (2) утверждает, что 2j + m и 28 – одно и то же число; уравнение (3), если оно верно, останется в силе, если мы вычтем это число из его правой и левой частей, а именно: из левой части мы вычтем 2j + m, а из правой – число 28. В результате мы получим

3m = 36,

откуда m = 12 (т.е. Мэри 12 лет). Используя информацию, содержащуюся в уравнении (1), мы получаем j + 24 = 32 и, следовательно, j = 8 (т.е. Джону 8 лет).

Другие методы решения систем уравнений мы продемонстрируем на следующих примерах (каждый из методов пригоден для решения любой из приведенных задач).

Предположим, что руководителю предприятия выплачивается 20%-я премия от чистой прибыли, вычисляемой вычитанием из прибыли налогов, но не его премии, и что налоги взимаются в размере 30% от общей прибыли за вычетом причитающейся руководителю премии, но не самих налогов. Предположим, что общая прибыль до вычитания премии и налогов составляет 50 000 долларов. Какова премия и каковы налоги? Задача может показаться неразрешимой, если подходить к ней с позиций арифметики, так как ни премия, ни налоги не могут быть представлены в численном виде, пока мы не узнаем хотя бы одну из этих величин. Однако с помощью алгебраических методов справиться с решением такой задачи не составляет труда. Если обозначить величину премии через b, а размер взимаемых налогов через t, то

b = 0,2(50 000 – t), t = 0,3(50 000 – b).

Здесь первое из уравнений утверждает, что b = 10 000 – 0,2t; используя это обстоятельство во втором уравнении, последовательно находим:

или после округления до ближайших целых чисел (долларов)

t = 12 766$, b = 7447$.

Системы линейных уравнений вроде этих можно решать с помощью определителей. В более сложных случаях мы можем воспользоваться различными численными методами их решения. См. также ОПРЕДЕЛИТЕЛЬ.

назад   дальше



АЛГЕБРА
Символы группировки
Системы уравнений
Степени и радикалы
Тождества
Многочлены и уравнения
Неравенства
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в систему свои работы, чтобы они стали доступны всем! Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Добавить работы →

Последнее обновление -
07/04/2020

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!