Вывести на печать

ПОСТОЯННЫЙ ТОК

В 1780 Л.Гальвани (17371798) заметил, что заряд, подводимый от электростатической машины к лапке мертвой лягушки, заставляет лапку резко дергаться. Более того, лапки лягушки, закрепленной над железной пластинкой на латунной проволочке, введенной в ее спинной мозг, дергались всякий раз, как только касались пластинки. Гальвани правильно объяснил это тем, что электрические заряды, проходя по нервным волокнам, заставляют мышцы лягушки сокращаться. Это движение зарядов было названо гальваническим током.

После опытов, проводившихся Гальвани, Вольта (1745–1827) изобрел так называемый вольтов столб – гальваническую батарею из нескольких последовательно соединенных электрохимических элементов. Его батарея состояла из чередовавшихся медных и цинковых кружочков, разделенных влажной бумагой, и позволяла наблюдать те же явления, что и электростатическая машина.

Повторяя опыты Вольты, Никольсон и Карлейль в 1800 обнаружили, что посредством электрического тока можно нанести медь из раствора сульфата меди на медный проводник. У.Волластон (1766–1828) получил такие же результаты с помощью электростатической машины. М.Фарадей (1791–1867) показал в 1833, что масса элемента, получаемого с помощью электролиза, производимого данным количеством заряда, пропорциональна его атомной массе, деленной на валентность. Это положение ныне называют законом Фарадея для электролиза.

Поскольку электрический ток представляет собой перенос электрических зарядов, естественно определить единицу силы тока как заряд в кулонах, который ежесекундно проходит через данную площадку. Сила тока 1 Кл/с была названа ампером в честь А.Ампера (1775–1836), открывшего многие важные эффекты, связанные с действием электрического тока.

Закон Ома, сопротивление и удельное сопротивление. В 1826 Г.Ом (1787–1854) сообщил о новом открытии: ток в металлическом проводнике при введении в цепь каждой дополнительной секции вольтова столба возрастал на одну и ту же величину. Это было обобщено в виде закона Ома. Поскольку создаваемая вольтовым столбом разность потенциалов пропорциональна числу включенных секций, этот закон утверждает, что разность потенциалов V между двумя точками проводника, деленная на силу тока I в проводнике, постоянна и не зависит от V или I. Отношение

называется сопротивлением проводника на участке между двумя точками. Сопротивление измеряется в омах (Ом), если разность потенциалов V выражена в вольтах, а сила тока I – в амперах. Сопротивление металлического проводника пропорционально его длине l и обратно пропорционально площади А его поперечного сечения. Оно остается постоянным, пока постоянна его температура. Обычно эти положения выражают формулой

где r – удельное сопротивление (ОмЧм), зависящее от материала проводника и его температуры. Температурный коэффициент удельного сопротивления определяется как относительное изменение величины r при изменении температуры на один градус. В таблице приведены значения удельных сопротивлений и температурных коэффициентов сопротивления некоторых обычных материалов, измеренные при комнатной температуре. Удельные сопротивления чистых металлов, как правило, ниже, чем у сплавов, а температурные коэффициенты – выше. Удельное сопротивление диэлектриков, особенно серы и слюды, намного выше, чем металлов; отношение достигает величины 1023. Температурные коэффициенты диэлектриков и полупроводников отрицательны и имеют относительно большие значения.

УДЕЛЬНЫЕ СОПРОТИВЛЕНИЯ И ТЕМПЕРАТУРНЫЕ КОЭФФИЦИЕНТЫ ОБЫЧНЫХ МАТЕРИАЛОВ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ

Элемент

Удельное сопротивление, ОмЧм

Температурный коэффициент, 1/° С

Серебро

1,6Ч10–8

4,0Ч10–3

Золото

2,2Ч10–8

3,7Ч10–3

Медь

1,7Ч10–8

4,0Ч10–3

Алюминий

2,7Ч10–8

4,2Ч10–3

Вольфрам

5,3Ч10–8

4,6Ч10–3

Никель

7,0Ч10–8

6,1Ч10–3

Углерод

3,5Ч10–3

–0,03

Сера

1015

 
Сплав или соединение

Удельное сопротивление, ОмЧм

Температурный коэффициент, 1/° С

Константан
45 Ni–55 Cu

49Ч10–8

0,5Ч10–5

Нихром Ni–Cr–Fe

112Ч10–8

40,0Ч10–5

Бакелит

1010

–0,06

Стекло

1012

–0,07

Слюда

1015

–0,07

 

назад   дальше



ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ
ЭЛЕКТРОСТАТИКА
Электростатические машины и лейденская банка
Диэлектрики
Проводники
Разность потенциалов
Емкость
Электрическое поле
ПОСТОЯННЫЙ ТОК
Закон Ома, сопротивление и удельное сопротивление
Тепловое действие электрического тока
Источники электрической энергии для цепей постоянного тока
Термоэлектричество
Эффекты Зеебека и Пельтье
Электрохимические эффекты
Цепи постоянного тока
Законы Кирхгофа
МАГНИТОСТАТИКА
МАГНИТНЫЕ ЭФФЕКТЫ ЭЛЕКТРИЧЕСКОГО ТОКА
Гальванометры
Электромагнитная индукция
Генераторы
Взаимная индукция
Трансформаторы
Самоиндукция
ПЕРЕМЕННЫЕ ТОКИ
Реактивное и полное сопротивления
Эффективные значения
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
29/03/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!