Вывести на печать

Разность потенциалов. Для описания свойств конденсатора необходимо ввести понятие разности потенциалов. Если на одной обкладке конденсатора имеется положительный заряд, а на другой – отрицательный заряд той же величины, то для переноса дополнительной порции положительного заряда с отрицательной обкладки на положительную необходимо совершить работу против сил притяжения со стороны отрицательных зарядов и отталкивания положительных. Разность потенциалов между обкладками определяется как отношение работы по переносу пробного заряда к величине этого заряда; при этом предполагается, что пробный заряд значительно меньше заряда, находившегося первоначально на каждой из обкладок. Несколько видоизменив формулировку, можно дать определение разности потенциалов между любыми двумя точками, которые могут находиться где угодно: на проводе с током, на разных обкладках конденсатора либо просто в пространстве. Это определение таково: разность потенциалов между двумя точками пространства равна отношению работы, затрачиваемой на перемещение пробного заряда из точки с более низким потенциалом в точку с более высоким потенциалом, к величине пробного заряда. Снова предполагается, что пробный заряд достаточно мал и не нарушает распределения зарядов, создающих измеряемую разность потенциалов. Разность потенциалов V измеряется в вольтах (В) при условии, что работа W выражена в джоулях (Дж), а пробный заряд qв кулонах (Кл).

Емкость. Емкость конденсатора равна отношению абсолютной величины заряда на любой из двух его обкладок (напомним, что их заряды различаются только знаком) к разности потенциалов между обкладками:

Емкость C измеряется в фарадах (Ф), если заряд Q выражен в кулонах (Кл), а разность потенциалов – в вольтах (В). Две только что упомянутые единицы измерения, вольт и фарада, названы так в честь ученых А.Вольты и М.Фарадея.

Фарада оказалась настолько крупной единицей, что емкость большинства конденсаторов выражают в микрофарадах (10–6 Ф) или пикофарадах (10–12 Ф).

Электрическое поле. Вблизи электрических зарядов существует электрическое поле, величина которого в данной точке пространства равна, по определению, отношению силы, действующей на точечный пробный заряд, помещенный в эту точку, к величине пробного заряда, опять-таки при условии, что пробный заряд достаточно мал и не изменяет распределения зарядов, создающих поле. Согласно этому определению, действующая на заряд q сила F и напряженность электрического поля E связаны соотношением

Фарадей ввел представление о силовых линиях электрического поля, начинающихся на положительных и оканчивающихся на отрицательных зарядах. При этом плотность (густота) силовых линий пропорциональна напряженности поля, а направление поля в данной точке совпадает с направлением касательной к силовой линии. Позднее К.Гаусс (1777–1855) подтвердил справедливость этой догадки. Исходя из установленного Кулоном закона обратных квадратов (1), он математически строго показал, что силовые линии, если их строить в соответствии с представлениями Фарадея, непрерывны повсюду в пустом пространстве, начинаясь на положительных зарядах и заканчиваясь на отрицательных. Это обобщение получило наименование теоремы Гаусса. Если полное число силовых линий, выходящих из каждого заряда Q, равно Q/e0, то плотность линий в любой точке (т.е. отношение числа линий, пересекающих воображаемую площадку малого размера, помещенную в эту точку перпендикулярно им, к площади этой площадки) равна величине напряженности электрического поля в этой точке, выраженной либо в Н/Кл, либо в В/м.

Простейший конденсатор представляет собой две параллельные проводящие пластины, расположенные близко друг к другу. При зарядке конденсатора пластины приобретают одинаковые, но противоположные по знаку заряды, равномерно распределенные по каждой из пластин, за исключением краев. Согласно теореме Гаусса, напряженность поля между такими пластинами постоянна и равна E = Q/e0A, где Q – заряд на положительно заряженной пластине, а А – площадь пластины. В силу определения разности потенциалов имеем V = Ed, где d – расстояние между пластинами. Таким образом, V = Qd/e0A , и емкость такого плоскопараллельного конденсатора равна:

где C выражается в фарадах, а A и d, соответственно, в м2 и м.

назад   дальше



ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ
ЭЛЕКТРОСТАТИКА
Электростатические машины и лейденская банка
Диэлектрики
Проводники
Разность потенциалов
Емкость
Электрическое поле
ПОСТОЯННЫЙ ТОК
Закон Ома, сопротивление и удельное сопротивление
Тепловое действие электрического тока
Источники электрической энергии для цепей постоянного тока
Термоэлектричество
Эффекты Зеебека и Пельтье
Электрохимические эффекты
Цепи постоянного тока
Законы Кирхгофа
МАГНИТОСТАТИКА
МАГНИТНЫЕ ЭФФЕКТЫ ЭЛЕКТРИЧЕСКОГО ТОКА
Гальванометры
Электромагнитная индукция
Генераторы
Взаимная индукция
Трансформаторы
Самоиндукция
ПЕРЕМЕННЫЕ ТОКИ
Реактивное и полное сопротивления
Эффективные значения
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в систему свои работы, чтобы они стали доступны всем! Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Добавить работы →

Последнее обновление -
24/01/2022

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!