Вывести на печать

Центральный процессор. ЦП типичного компьютера состоит из большого числа логических вентилей и триггеров. УУ использует много вентилей, чтобы выбрать способ обработки, которая должна быть выполнена в АЛУ, а также направить полученные результаты другим частям компьютера. Регистры, о которых мы рассказывали выше, представляют собой большей частью матрицы из триггеров. Наметился ряд тенденций в конструкции и производстве ЦП. В больших компьютерах и многих миникомпьютерах ЦП состоит из набора чипов, каждый из которых выполняет специальную функцию. В этих машинах каждый из основных блоков ЦП – АЛУ, УУ, микрокоманды для УУ – может находиться на одном или нескольких чипах. (Микрокоманды, по существу, сообщают УУ, какие проводники и вентили нужно соединить, чтобы выполнить команду.) Эти ЦП слишком сложны, чтобы их можно было уместить на одном чипе. Такой подход также позволяет вносить изменения в схему компьютера путем замены одного или двух чипов, а не всего ЦП.

В некоторых компьютерах выполняемая задача разделяется между несколькими ЦП. Этот метод известен как параллельная обработка. Некоторые ЦП работают непосредственно в терминах языка программирования (см. ниже), а не обычной архитектуры. Ожидается увеличение разнообразия конструкций и возможностей ЦП. Вероятен также отход от традиционной архитектуры по мере роста объема и скоростей обработки.

Возможно, самый большой скачок в конструировании ЦП был сделан с появлением в 1971 микропроцессора 4044 фирмы «Интел». Этот 4-разрядный микропроцессор представлял собой сравнительно медленный чип с ограниченным набором команд, но он и его наследники сделали возможным создание карманных калькуляторов и цифровых часов и привели к разработке микрокомпьютера. В 1974 появились 8-разрядные микропроцессоры, обрабатывающие по 8 бит информации одновременно.

Как упоминалось раньше, микропроцессор (или другой ЦП) принимает информацию в виде «слов». Например, память компьютера по командам УУ подает в сумматор сразу 8 бит. Затем УУ добавляет, например, число 00101101 к битам в сумматоре (снова сразу все). Теперь в сумматоре находится новый набор из 8 бит. Далее УУ передает эти 8 бит в память, все сразу. На каждом из этих шагов 8 бит обрабатываются или перемещаются одновременно, но индивидуальные действия – их ввод, сложение, копирование результата – выполняются последовательно. В принципе, чем больший размер слова доступен для обработки ЦП, тем больше информации он может «проглотить» сразу и тем быстрее он выполняет свои задачи.

Восьмиразрядные микропроцессоры дали жизнь микрокомпьютерам, сложным компьютерным терминалам и ряду «интеллектуальных» устройств; прогресс в вычислительной технике продолжается. В 1990-х годах имелись сотни миллионов 8- и 16-разрядных микропроцессоров, а в большинстве новых персональных компьютеров и рабочих станций использовались 32-разрядные микропроцессоры, выполняющие миллионы операций в секунду. В 1999 фирмой «Интел» выпущен высокопроизводительный микропроцессор «Пентиум III» с тактовой частотой 500 МГц, интегрированной кэш-памятью до 2 Мб и повышенными возможностями в таких сферах, как распознавание речи и трехмерная графика.

Одним из логических следствий микроэлектронной технологии была разработка всего компьютера, включая память, на чипе. Конечно, для таких малых компьютеров память довольно ограниченна, но она достаточна для разработки таких устройств, как реле-регуляторы автоматического зажигания и топливных систем автомобилей и микроволновых печей, а также полноценных «карманных» компьютеров.

Устройства памяти. Основная память. Главным устройством памяти для компьютеров второго поколения и для многих больших компьютеров третьего поколения был магнитный сердечник – крохотное колечко магнитного материала размером с бусинку. С помощью тонких проводов, прошивающих колечки в вертикальном и горизонтальном направлениях, из этих сердечников вяжется сетка внутри компьютера. Каждый сердечник хранит магнитный заряд. Направление магнитного потока определяет состояние 1 или 0. Запоминающее устройство на сердечниках было изобретено в 1948 Э.Уонгом и широко использовалось в 1950–1960-х годах.

Запоминающее устройство на сердечниках является энергонезависимой памятью, т.е. оно сохраняет свое содержимое даже тогда, когда электроэнергия отключается. Сердечники выполняли функции появившихся ранее ламповых триггеров и привели к появлению термина «оперативная память». Позже память на сердечниках была вытеснена микроэлектронными устройствами, однако она все еще используется в армейском оборудовании, на космических кораблях и для других специальных применений.

Важным дополнением к микропроцессору является память на интегральных схемах. Существуют два основных класса этой памяти: оперативное запоминающее устройство с произвольной выборкой (ОЗУ) и постоянное запоминающее устройство (ПЗУ).

ОЗУ работают быстро: микропроцессор может получать доступ к ним за 10–20 нс. Обычные коммерческие модули ОЗУ хранят до 256 Мб (1 Мб равен 1 048 576 байт). ОЗУ надежны и работают годами, выполняя миллиарды операций. ОЗУ помнят только то, что вы сообщили им в последний раз; все остальное стирается. ОЗУ потребляют довольно мало энергии, если сравнивать их с другими интегральными схемами примерно тех же размеров и плотности упаковки. Некоторые ОЗУ расходуют так мало энергии, что достаточно маленькой батарейки, чтобы активизировать или хотя бы поддерживать их память после отключения основного источника энергии. Эти ОЗУ часто используются в небольших портативных компьютерах и калькуляторах.

При отключении энергии ОЗУ свою память теряет. ПЗУ же запоминает практически навсегда. ПЗУ особенно удобны для задач, которые нуждаются в неоднократном повторении одного и того же набора команд. ПЗУ работают обычно медленнее, чем ОЗУ, но зато их память постоянна и помехоустойчива. Кроме того, свой проигрыш в скорости реакции ПЗУ компенсируют плотностью упаковки.

Характеристика ОЗУ и ПЗУ, именуемая произвольным доступом, относится к способности микропроцессора или другого ЦП получать доступ к любому элементу памяти в любое время. Например, если телефонный номер хранится где-нибудь в ОЗУ или ПЗУ и ЦП (через свою программу) знает, где этот номер находится, то ЦП может набрать его почти мгновенно. Важно лишь, чтобы было известно, где он находится.

Не все ПЗУ имеют абсолютно постоянную память. Некоторые ПЗУ-подобные устройства обладают, так сказать, полупостоянной памятью, т.е. они помнят (даже при отключенном питании), что им сообщалось, до тех пор, пока не подвергнутся стиранию и перезаписи. Стирание осуществляется путем экспозиции чипа в ультрафиолетовых лучах высокой интенсивности (например, в стираемом ПЗУ – СПЗУ) или другими способами, как в некоторых современных чипах памяти со стиранием и записью.

назад   дальше



КОМПЬЮТЕР
ТИПЫ КОМПЬЮТЕРОВ
Аналоговые компьютеры
Цифровые компьютеры
Персональные компьютеры
АРХИТЕКТУРА
Память
Центральный процессор
Другие типы архитектуры
Внутренние коммуникации
Ввод и вывод
АППАРАТНАЯ ЧАСТЬ КОМПЬЮТЕРА
Центральный процессор
Устройства памяти
Основная память
Внешняя память
Устройства ввода-вывода
Интерфейс человек – компьютер
Интерфейсы для телекоммуникаций
Интерфейсы датчик – исполнительный механизм
Компьютеры следующего поколения
ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ КОМПЬЮТЕРОВ
Концепции программирования
Языки
Беспрограммное программное обеспечение
Графические интерфейсы пользователя (ГИП)
ПРИМЕНЕНИЕ КОМПЬЮТЕРОВ
Образование и распространение информации
Бизнес
Компьютер в доме
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в систему свои работы, чтобы они стали доступны всем! Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Добавить работы →

Последнее обновление -
28/11/2020

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!