Вывести на печать

Дроби. Интуитивно мы представляем себе дробь 2/3 как результат разбиения 1 на три равные части и взятия двух из них. Однако математик стремится как можно меньше полагаться на интуицию и определять рациональные числа через более простые объекты – целые числа. Это можно сделать, если 2/3 рассматривать как упорядоченную пару (2,3) целых чисел. Для завершения определения необходимо сформулировать правила равенства дробей, а также сложения и умножения. Разумеется, эти правила должны быть эквивалентны правилам арифметики и, естественно, отличаться от правил для тех упорядоченных пар, которые мы определили как целые числа. Вот эти правила:

Нетрудно видеть, что пары (a,1) действуют как целые числа a; продолжая рассуждать так же, как в случае отрицательных чисел, мы обозначим через 2 дробь (2,1), или (4,2), или любую другую дробь, равную (2,1). Забудем теперь о целых числах и сохраним их лишь как средство записи определенных дробей.

Рациональные и иррациональные числа. Дроби принято также называть рациональными числами, так как они представимы в виде отношений (от лат. ratio – отношение) двух целых чисел. Но если нам потребуется число, квадрат которого равен 2, то мы не сможем обойтись рациональными числами, т.к. не существует рационального числа, квадрат которого равен 2. То же самое выяснится, если поинтересоваться числом, выражающим отношение длины окружности к ее диаметру. Следовательно, если мы хотим получить квадратные корни из всех положительных чисел, то нам необходимо расширить класс рациональных чисел. Новые числа, называемые иррациональными (т.е. не рациональными), можно определять различными способами. Упорядоченные пары для этого не годятся; один из простейших способов состоит в том, чтобы определить иррациональные числа как бесконечные непериодические десятичные дроби.

Действительные числа. Рациональные и иррациональные числа вместе называются действительными или вещественными числами. Геометрически их можно представить точками на прямой, при этом дроби оказываются в промежутках между целыми числами, а иррациональные числа – в промежутках между дробями, как показано на рис. 1. Можно показать, что система действительных чисел обладает свойством, известным как «полнота» и означающим, что каждой точке на прямой соответствует некоторое действительное число.

Комплксные числа. Так как квадраты положительных и отрицательных действительных чисел положительны, на прямой действительных чисел нет точки, соответствующей числу, квадрат которого был бы равен -1. Но если бы мы попытались решать квадратные уравнения типа x2 + 1 = 0, то необходимо было бы поступать так, как если бы существовало некоторое число i, квадрат которого был бы равен -1. Но поскольку такого числа нет, нам не остается ничего другого, как воспользоваться «воображаемым», или «мнимым», числом. Соответственно, «число» i и его комбинации с обычными числами (типа 2 + 3i) стали называться мнимыми. Современные математики предпочитают называть такие числа «комплксными», поскольку они, как мы увидим, столь же «реальны», как и те, с которыми нам уже доводилось встречаться раньше. Долгое время математики свободно пользовались мнимыми числами и получали полезные результаты, хотя не до конца понимали то, что они делали. И до начала 19 в. никому и в голову не приходило «оживить» мнимые числа с помощью их явного определения. Для этого нужно построить некоторую совокупность математических объектов, которые с точки зрения алгебры вели бы себя как выражения a + bi, если условиться, что i 2 = –1 . Такие объекты можно определить следующим образом. Рассмотрим в качестве наших новых чисел упорядоченные пары действительных чисел, сложение и умножение которых определяется формулами:

Например,

Назовем такие упорядоченные пары комплксными числами. Пары частного вида (a,0) со вторым членом, равным нулю, ведут себя как действительные числа, поэтому мы условимся обозначать их так же: например, 2 означает (2,0). С другой стороны, комплексное число (0,b) по определению умножения обладает свойством (0,b)ґ(0,b) = (0 – b2, 0 + 0) = (–b2,0) = –b2. Например, в случае (0,1)ґ(0,1) мы находим произведение (-1,0); следовательно, (0,1)2 = (–1,0). Мы уже условились записывать комплексное число (-1,0) как -1, поэтому если число (0,1) обозначить символом i, то мы получим комплексное число i, такое, что i 2 = –1. Кроме того, комплексное число (2,3) теперь можно записать в виде 2 + 3i.

Важное отличие такого подхода к комплексным числам от традиционного состоит в том, что в данном случае число i не содержит ничего загадочного или мнимого: оно представляет собой нечто, хорошо определяемое посредством уже существовавших ранее чисел, хотя, разумеется, и не совпадает ни с одним из них. Точно так же, действительное число 2 не является комплексным, хотя мы и используем символ 2 для обозначения комплексного числа. Так как на самом деле в мнимых числах нет ничего «мнимого», то неудивительно, что они широко используются в реальных ситуациях, например в электротехнике (где вместо буквы i обычно используют букву j, так как в электротехнике i – символ для текущего значения силы тока).

Алгебра комплексных чисел во многом напоминает алгебру действительных чисел, хотя имеются и существенные различия. Например, правило для комплексных чисел не выполняется: , поэтому , в то время как .

Определение комплексных чисел как пар действительных чисел подсказывает способ их наглядного геометрического представления. Хотя прямая не может вместить и действительные, и комплексные числа, их вполне может вместить плоскость (см. рис. 2,а). Например, число 2 + 3i представлено точкой плоскости с координатами (2,3) (см. также АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ) .

(5.27 Кб) (4.88 Кб)

Сложение комплексных чисел допускает простую геометрическую интерпретацию. Например, сумма чисел 2 + 3i и 3 – i есть число 5 + 2i, которому соответствует четвертая вершина параллелограмма с тремя вершинами в точках 0, 2 + 3i и 3 – i .

Точку на плоскости можно задавать не только прямоугольными (декартовыми) координатами (x,y), но и ее полярными координатами (r,q), задающими расстояние от точки до начала координат и угол. Следовательно, комплексное число x + iy может быть записано и в полярных координатах (рис. 2,б). Длина радиуса-вектора r равна расстоянию от начала координат до точки, соответствующей комплексному числу; величина r называется модулем комплексного числа и определяется по формуле . Часто модуль записывают в виде . Угол q называется «углом», «аргументом» или «фазой» комплексного числа. Такое число имеет бесконечно много углов, отличающихся на величину, кратную 360°; например, i имеет угол 90°, 450°, -270°, ј Так как декартовы и полярные координаты одной и той же точки связаны между собой соотношениями x = r cos q, y = r sin q, справедливо равенство x + iy = r (cos q + i sin q).

Если z = x + iy, то число x – iy называется комплексно сопряженным с z и обозначается , а в технике z*. Формула z = r2 удобна для вычисления модуля комплексного числа z, особенно если это число определяется сложной формулой.

Пользуясь формулами тригонометрии, находим:

Отсюда правило: чтобы перемножить два комплексных числа, необходимо умножить их модули и сложить их аргументы. В частности, квадрат числа r (cos q + i sin q) равен r 2(cos 2q + i sin 2q), более общая, n-я степень того же числа равна rn(cos nq + i sin nq) (формула Муавра). Эта формула справедлива при надлежащей интерпретации, даже если n – не положительное целое число. Например,

Следовательно, можно ожидать, что кубический корень из 8i (n = 1/3) будет равен

Поскольку аргумент числа i можно считать равным и 90° + 360° = 450°, и 90° + 360° + 360° = 810°, мы можем найти еще два кубических корня из 8i, а именно:

и

(рис. 3). Любое комплексное число (кроме нуля) также имеет три кубических корня (геометрически расположенных в вершинах равностороннего треугольника) и n корней n-й степени, если n – положительное целое число.

(5.12 Кб)

Так как мы можем определить целые степени и корни из комплексных чисел, можно ввести и любую рациональную степень, например (2 + i)–3/4. Сложнее определить иррациональные или комплексные степени. Прежде всего необходимо ввести экспоненциальную функцию. Это можно сделать, используя ее разложение в степенной ряд

Известно, что если q – действительное число, то eiq определяется этим степенным рядом и eiq = cos q + i sin q; следовательно, тригонометрическая форма комплексного числа представима в компактном виде z = reiq. Логарифм комплексного числа reiq, по определению, равен ln r + iq, где ln означает логарифм по основанию e, а q принимает все возможные значения, измеряемые в радианах. Таким образом, комплексное число имеет бесконечно много логарифмов. Например, ln (–2) = ln 2 + ip + любое целое кратное 2p. В общем виде степени можно теперь определить с помощью соотношения ab = e b ln a. Например, i–2i = e –2 ln i. Так как значения аргумента числа i равны p/2 (90°, выраженное в радианах) плюс целое кратное, то число i –2i имеет значения ep, e3p, e-p и т.д., которые все являются действительными.

назад   дальше



ЧИСЛО
Положительные целые числа
Отрицательные целые числа и нуль
Дроби
Рациональные и иррациональные числа
Действительные числа
Комплйксные числа
Гиперкомплексные числа

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
16/06/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!