Вывести на печать

ЧИСЛО. Понятие числа в математике может относиться к объектам различной природы: натуральным числам, используемым при счете (положительным целым числам 1, 2, 3 и т.д.), числам, являющимся возможными результатами (идеализированных) измерений (это такие числа, как 2/3, , – их называют действительными числами), отрицательным числам, мнимым числам (скажем, к ) и к другим более абстрактным классам чисел, используемым в высших разделах математики (например, к гиперкомплексным и трансфинитным числам). Число необходимо отличать от его символа, или обозначения, которое его представляет. Мы рассмотрим логические отношения между различными классами чисел (см. также ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ).

Элементарная арифметика оперирует с положительными целыми числами и нулем, с дробями, в известной мере с положительными действительными числами, такими как , и иногда с отрицательными действительными числами. Более сложные действия над отрицательными и мнимыми числами обычно принято относить к компетенции алгебры. Правила, осваиваемые при изучении арифметики, применимы без каких-либо ограничений только к положительным действительным числам, поэтому некоторые действия, производимые над более общими классами чисел, часто кажутся загадочными, например

Такие загадки легко разрешаются, если принять во внимание, что различные классы чисел имеют совершенно различный смысл; хотя у них достаточного много общего, чтобы их всех можно было называть числами, не следует думать, что все они будут удовлетворять одним и тем же правилам.

Положительные целые числа. Хотя мы все усваиваем положительные целые числа (1, 2, 3 и т.д.) в раннем детстве, когда вряд ли приходит в голову задумываться об определениях, тем не менее такие числа могут быть определены по всем правилам формальной логики. Строгое определение числа 1 заняло бы не один десяток страниц, а формула типа 1 + 1 = 2, если записать ее во всех подробностях без каких-либо сокращений, протянулась бы на несколько километров. Однако любая математическая теория вынуждена начинаться с некоторых неопределяемых понятий и аксиом или постулатов относительно них. Так как положительные целые числа хорошо известны и трудно определить их с помощью чего-то более простого, мы примем их за исходные неопределяемые понятия и будем считать, что основные свойства этих чисел известны.

Отрицательные целые числа и нуль. Отрицательные числа в наши дни вещь обыденная: их используют, например, для того, чтобы представить температуру ниже нуля. Поэтому кажется удивительным, что еще несколько столетий назад какой-либо конкретной интерпретации отрицательных чисел не было, а возникающие по ходу вычислений отрицательные числа назывались «воображаемыми». Несмотря на то, что интуитивная интерпретация отрицательных чисел сама по себе полезна, пытаясь понять такие «правила», как (–4)ґ(–3) = +12, мы должны определить отрицательные числа с помощью положительных. Для этого нам нужно построить множество таких математических объектов, которые будут вести себя в арифметике и алгебре именно так, как можно было бы ожидать от отрицательных чисел. Один из способов построить такое множество состоит в рассмотрении упорядоченных пар положительных чисел (a,b). «Упорядоченность» означает, что, например, пара (2,3) отлична от пары (3,2). Такие упорядоченные пары можно рассматривать как новый класс чисел. Теперь мы должны сказать, когда два таких новых числа равны и что означает их сложение и умножение. Наш выбор определений обусловлен желанием, чтобы пара (a,b) действовала как разность (ab), которая пока что определена, лишь когда a больше b. Так как в алгебре (a – b) + (c – d) = (a + c) – (b + d), мы приходим к необходимости определить сложение новых чисел как (a,b) + (c,d) = (a + c, b + d); т.к. (ab)ґ(cd) = ac + bd – (bc + ad), мы определяем умножение равенством (a,b)ґ(c,d) = (ac + bd, bc + ad); а так как (a – b) = (c – d), если a + d = b + c, мы определяем равенство новых чисел соотношением (a,b) = (c,d), если a + d = b + c. Таким образом,

Используя определения равенства пар, можно записать сумму и произведение пар в более простом виде:

Все пары (a,a) равны (по определению равенства пар) и действуют так, как по нашим ожиданиям должен действовать нуль. Например, (2,3) + (1,1) = (3,4) = (2,3); (2,3)ґ(1,1) = (2 + 3, 2 + 3) = (5,5) = (1,1). Пары (a,a) мы можем обозначить символом 0 (который до сих пор не использовали).

Пары (a,b), где b больше a, ведут себя так, как должны были бы действовать отрицательные числа, и мы можем обозначить пару (a,b) символом –(ba). Например, -4 – это (1,5), а -3 – это (1,4); (–4)ґ(–3) = (21,9), или (13,1). Последнее число хотелось бы обозначить как 12, но это заведомо не то же самое, что положительное целое число 12, поскольку обозначает пару положительных целых чисел, а не одно положительное целое число. Необходимо подчеркнуть, что поскольку пары (a,b), где b меньше a, действуют как положительные целые числа (ab), мы будем записывать такие числа как (ab). При этом надо забыть о положительных целых числах, с которых мы начали, и впредь пользоваться только нашими новыми числами, которые назовем целыми числами. То, что мы намереваемся использовать старые названия для некоторых новых чисел, не должно вводить в заблуждение относительно того, что в действительности новые числа представляют собой объекты иного рода.

дальше



ЧИСЛО
Положительные целые числа
Отрицательные целые числа и нуль
Дроби
Рациональные и иррациональные числа
Действительные числа
Комплйксные числа
Гиперкомплексные числа

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в систему свои работы, чтобы они стали доступны всем! Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Добавить работы →

Последнее обновление -
06/04/2020

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!