Вывести на печать

Прямые. Прямая – одна из простейших геометрических фигур. Алгебраическое уравнение прямой также имеет простой вид.

Пусть B = (0,b)– точка пересечения прямой L с осью y, а P = (x,y) – любая другая точка на этой прямой. Проведем через точку B прямую, параллельную оси x, а через точку P прямую, параллельную оси y; проведем также прямую x = 1. Пусть m – угловой коэффициент прямой L (см. рис. 4). Так как треугольники BSQ и BRP подобны, то

(5.39 Кб)

или, после упрощения,

Следовательно, если точка P лежит на прямой L, то ее координаты удовлетворяют уравнению (1). Обратно, нетрудно показать, что если x и y связаны между собой уравнением (1), то точка P непременно лежит на прямой L, проходящей через точку (0,b) и имеющей угловой коэффициент m.

Таким образом, уравнение любой прямой можно записать в виде

В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени по x и y можно привести к виду (2) либо (3).

Рассмотрим произвольное уравнение первой степени

Если B 0, мы можем записать уравнение (4) в виде

т.е. в виде (2). При B = 0 уравнение (4) сводится к уравнению

Ax = C,

или

т.е. к уравнению вида (3).

Таким образом, любая прямая описывается уравнением первой степени по x и y, и обратно, каждое уравнение первой степени по x и y соответствует некоторой прямой.

назад   дальше



АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
Прямые
Парабола
Преобразование уравнений
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ
Более высокие размерности
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в систему свои работы, чтобы они стали доступны всем! Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Добавить работы →

Последнее обновление -
03/04/2020

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!