Students.by - это живая энциклопедия белорусского студента (статьи, книги, мультимедиа). Еще мы предлагаем поиск по лучшим полнотекстовым научным хранилищам Беларуси!
|
Векторы и матрицы. Знакомые всем физические векторы, используемые для представления объектов, характеризуемых величиной и направлением (наглядно их изображают символами со стрелкой), можно рассматривать и на более абстрактном уровне. Такой подход позволяет понять более сложные операции над векторами, распространить векторную алгебру на случай n-мерного пространства и расширить область применения понятия «вектор». Пусть F поле. Строка (a1, a2, ..., an) или столбец
из n элементов называется n-мерным вектором-строкой или n-мерным вектором-столбцом v. Два n-мерных вектора-строки v, vў равны в том и только в том случае, если равны все их соответствующие элементы. Векторы можно складывать и вычитать по правилу (a1, ..., an) ± (b1, ..., bn) = (a1 ± b1, ..., an ± bn). Нетрудно проверить, что при таких определениях векторы образуют абелеву группу. Важное значение имеет еще одна операция над векторами: если v = (a1, ..., an) вектор, а a элемент из F, то по определению av = (aa1, aa2, ..., aan). Векторы допускают и более абстрактное определение, которое, как можно показать, эквивалентно приведенному выше и существенно увеличивает применимость векторов в различных областях науки. Можно определить произведение двух векторов-строк, но гораздо полезнее следующее определение произведения n-мерного вектора-строки на n-мерный вектор-столбец:
Следует заметить, что такое произведение будет уже не вектором, а просто элементом из F. Матрицей A размера nґn называется множество n-мерных векторов-строк, записанных один под другим (или n-мерных векторов-столбцов, записанных рядом). Например,
Две матрицы A и Aў равны в том и только в том случае, когда у них равны все элементы, стоящие на одинаковых местах. Сумма двух матриц размера nґn по определению получается сложением соответствующих векторов-строк, а произведение AAў определяется по следующему правилу: в качестве j-го элемента i-й строки берется произведение i-й строки матрицы A на j-й столбец матрицы Aў. Например, при n = 2 и
имеем
и
Нетрудно проверить, что при таких определениях множество матриц размера nґn образует кольцо. Это кольцо некоммутативно и имеет делители нуля, как показывает следующий пример:
так как нулевым элементом кольца матриц 2ґ2 служит матрица
Кольцо матриц размера nґn с элементами из некоммутативного поля (системы, обладающей всеми свойствами поля за исключением коммутативности умножения и называемой телом) допускает более абстрактное представление. Точнее говоря, справедлива теорема, которая утверждает, что любое кольцо, удовлетворяющее некоторым двум условиям, обязательно должно быть множеством матриц размера nґn над некоторым телом. Эту теорему можно даже несколько усилить и тем самым получить описание более широкого класса колец. Для некоторых матриц A существуют обратные матрицы; это означает, что для матрицы A существует матрица Aў, такая, что AAў = AўA = I, где I единичная матрица
которая обладает тем свойством, что для любой матрицы B справедливо соотношение IB = BI = B. Множество всех таких матриц размера nґn образует группу, и это обстоятельство имеет важное значение для изучения более абстрактных групп, поскольку большой их класс допускает матричное представление. Векторы и матрицы находят все более широкое применение и вне математики. Они были изобретены в середине 19 в. в связи с изучением n-мерной геометрии. С тех пор их стали использовать везде, где приходится иметь дело с обработкой больших массивов данных. С использованием матриц решаются многие технические задачи, связанные с расчетом напряжений, деформаций, колебаний. Решение системы линейных уравнений с несколькими переменными по существу является задачей матричного исчисления. Например, систему уравнений
можно записать в виде
и затем, чтобы найти x, y, z, нужно умножить матрицу, обратную матрице
Матрицы используются и при решении систем дифференциальных уравнений, которые возникают в большинстве наук: такую систему можно заменить одним матричным дифференциальным уравнением. Одно из главных применений матриц в общественных науках связано с построением моделей различных ситуаций. Например, экономическую ситуацию в стране часто моделируют с помощью матрицы с примерно 100 строками и столбцами. На основании операций над такой матрицей экономисты создают свои прогнозы. Пример использования матриц в деловом мире линейное программирование, которое можно использовать при составлении производственных планов, схем распределения сырья и готовой продукции и в других сложных операциях. Не вдаваясь в подробности, можно сказать, что линейная программа состоит из очень большого числа утверждений о взаимосвязях между различными факторами, которые необходимо учесть перед тем, как принять окончательное решение. Эти утверждения сводятся в некоторую матрицу, операции над которой позволяют программисту решить, какая из нескольких имеющихся процедур оптимальна для решения рассматриваемой проблемы. Это позволяет найти процедуру, обеспечивающую максимальную прибыль или максимальную экономию времени. |
|