Вывести на печать

Кольца. Множество R элементов a, b, c, ... называется кольцом, если каждой паре элементов a, b из R поставлен в соответствие некоторый элемент из R, называемый их суммой и обозначаемый a + b, и еще один элемент из R, называемый их произведением и обозначаемый ab. Кроме того, должны выполняться следующие условия:

(1) a + (b + c) = (a + b) + c;

(2) a + b = b + a;

(3) для любых двух элементов a, b из R существует элемент x из R, такой, что a + x = b;

(4) (ab) c = a (bc);

(5) a (b + c) = ab + ac, (b + c) a = ba + ca.

Внимательный читатель заметит, что выполнение условий (1), (2) и (3) означает, что R – абелева группа по сложению. Единственный элемент x, такой, что a + x = a (существование которого может быть доказано), называется нулевым элементом кольца R и обозначается 0. Исходя из свойств (1)–(5), нетрудно доказать, что для каждого элемента a из кольца R справедливо равенство aЧ0 = 0Чa = 0. Однако есть кольца, в которых нулем может оказаться произведение ненулевых элементов, т.е. в таких кольцах существуют элементы a, b, ни один из которых не равен 0, но для которых ab = 0. Такие кольца называются кольцами с делителями нуля. (Мы встретимся с ними в разделах, посвященных полям и матрицам.) Многие тождества, известные из обычной алгебры, выполняются и в произвольных кольцах: все обычные тождества, содержащие только сложение и вычитание, а также тождества, не использующие коммутативность умножения или возможность деления, сохраняют силу и в произвольном кольце R. Например, тождество a [(b + c) + (e + f)] = (ae + ac) + (ab + af) остается верным в любом кольце R.

Примерами колец могут служить уже упоминавшееся множество всех целых чисел с обычными операциями сложения и умножения и множество всех многочленов f (x) = a0 + a1x + ... + anxn, где ai – действительные числа, а x – переменная. Два многочлена являются одним и тем же элементом кольца в том и только в том случае, когда коэффициенты при одинаковых степенях переменной x равны. Сумма многочленов

определяется так:

а их произведение – так:

где cj = a0bj + a1bj – 1 + ... + aj – 1b1 + ajb0. Проверка пяти условий из определения кольца – занятие утомительное, но не сопряженное с какими-либо реальными трудностями. Она опирается на тот факт, что эти условия выполняются для действительных чисел. В обоих примерах умножение коммутативно (т.е. ab = ba), и оба эти кольца не содержат делителей нуля. Пример некоммутативного кольца с делителями нуля мы приведем в заключительном разделе.

Как и в случае групп, хотелось бы описать кольца более полно. Эта проблема частично решена, и мы вернемся к ней чуть позже. Коммутативные кольца без делителей нуля типа приведенных выше встречаются в различных теоретико-числовых проблемах, и существует хорошо разработанная теория колец этого класса.

Самой знаменитой теоретико-числовой проблемой, немало способствовавшей развитию теории колец, по праву следует считать так называемую великую теорему Ферма: «Если n – натуральное число, большее двух, то не существует таких отличных от нуля целых чисел x, y, z, что xn + yn = zn». (На полях своего экземпляра Арифметики Диофанта П.Ферма сформулировал эту теорему, отметив, что нашел ее «поистине чудесное доказательство», но не привел его.) К настоящему времени эта теорема доказана, но не элементарными методами, которые могли быть доступны Ферма, а с помощью теории эллиптических кривых. Однако значительная часть теории колец возникла в результате попыток доказать теорему Ферма. В частности, эти попытки привели к введению понятия идеала. Подкольцо S кольца R (т.е. некоторое подмножество элементов кольца R, такое, что разность и произведение любых двух элементов из S суть снова элементы из S) называется идеалом кольца R, если для каждого элемента s из S и каждого элемента r из R оба произведения rs и sr принадлежат S. Поскольку подробное изложение теории идеалов увело бы нас далеко в сторону от цели статьи, упомянем лишь, что в коммутативных кольцах некоторые типы идеалов играют такую же роль, как простые числа в кольце целых чисел, и что такие геометрические объекты, как алгебраические кривые на плоскости, могут быть полностью описаны идеалами в кольце многочленов от двух переменных.

При проектировании электронных схем очень полезными оказываются кольца R, каждый элемент r которых удовлетворяет соотношению r2 = r. Вычисления в рамках таких «булевых колец» в точности соответствуют некоторым правилам проектирования схем, так что задача построения схемы, удовлетворяющей заданным условиям, сводится к более простой задаче упрощения соответствующего выражения в булевом кольце.

назад   дальше



АЛГЕБРА АБСТРАКТНАЯ
Группы
Кольца
Поля
Векторы и матрицы
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
28/03/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!