Вывести на печать

Поля. Полем F называется коммутативное кольцо, в котором ненулевые элементы образуют абелеву группу по умножению. Это означает, что над элементами поля все четыре рациональные операции (сложение, вычитание, умножение и деление на ненулевые элементы) могут проводиться так же, как над обычными числами, и что для полей остаются в силе все правила элементарной алгебры. Приведем несколько примеров полей.

Множество всех действительных чисел с обычными операциями сложения, вычитания, умножения и деления.

Множество всех комплексных чисел (всех чисел вида a + bi, где a и b – действительные числа и i2 = –1) также дает пример поля. Четыре рациональные операции в этом случае определяются следующим образом:

Нетрудно проверить, что все условия из определения поля при таком задании операций на указанном множестве выполняются.

Еще один пример поля – множество всех чисел вида , где a, b – рациональные числа, с операциями сложения, вычитания, умножения и деления, очень похожими на операции, введенные на множестве комплексных чисел в предыдущем примере, с той разницей, что i заменяется на , а равенство i2 = –1 – на равенство .

Более удивительный пример поля получается следующим образом. Любое целое число при делении на 3 дает один из остатков 0, 1, 2. Разделим множество всех целых чисел на три класса так, чтобы все числа, принадлежащие к одному классу, давали при делении на 3 один и тот же остаток. Обозначим эти классы через {0}, {1} и {2}. Тогда число 9 попадает в класс {0}, число 185 – в класс {2}, а число 73 – в класс {1}. Определим сложение и умножение двух классов следующим образом: из каждого класса выберем по одному представителю, произведем сложение или умножение представителей и в качестве результата возьмем класс, которому принадлежит соответственно сумма или произведение представителей (можно проверить, что полученный класс не зависит от выбора представителей и что класс {0} играет роль нулевого элемента). Например, {2} + {2} = {1}, {0} + {1} = {1}, {2}Ч{2} = {1} и {1}Ч{2} = {2}. Те же соображения остаются в силе, если вместо числа 3 мы выберем любое целое число m. Однако поле мы получим только в том случае, когда число m простое (т.е. делится только на себя и на 1). Причина этого очевидна: в поле всегда отсутствуют делители нуля, ибо если ab = 0, но при этом a 0, то 0 = (1/a)(ab) = b, так как в поле всегда существует элемент 1/a, хотя его, разумеется, может не быть в кольце. Таким образом, в любом поле произведение ab может быть равно нулю только в том случае, когда a или b равно нулю. Если m = m1m2, где m1 m, m2 m, то {m1} 0, {m2} 0, но {m1m2} = 0 (так как m1m2 дает при делении на m остаток 0). Таким образом, мы можем ожидать, что получится поле – и всегда в действительности получаем поле – только в том случае, когда m – простое число (см. также ЧИСЕЛ ТЕОРИЯ).

Последний пример – поле всех рациональных функций одной переменной, т.е. множество всех отношений многочленов (a0 + a1x + ... + anxn) ё (b0 + b1x + ... + bmxm) при обычном определении операций сложения и умножения. Это поле имеет очевидную связь с упоминавшимся выше кольцом многочленов и получается из него взятием всех формальных отношений. Разумеется, аналогичным образом из кольца целых чисел получается поле всех рациональных чисел. Для всех коммутативных колец R без делителей нуля ситуация здесь общая. Мы всегда можем построить поле F формальных отношений элементов кольца R, в котором само R будет содержаться как множество всех элементов вида a ё 1.

В отличие от ситуации с группами и кольцами мы располагаем довольно полным описанием всех возможных полей. Этим описанием мы обязаны, главным образом, Э.Штейницу (1871–1928). Приведенные выше примеры иллюстрируют все возможные типы полей. Разумеется, и в теории полей осталось еще много нерешенных проблем, однако они значительно тоньше, чем простое описание.

Поля важную роль играют при исследовании алгебраических уравнений. Пусть

уравнение относительно x с коэффициентами из некоторого поля F. Может случиться так, что ни один элемент из F при подстановке вместо x не обращает левую часть формулы (*) в нуль. Однако можно доказать, что всегда существует более широкое поле Fў, содержащее F, такое, что один из его элементов обращает левую часть (*) в нуль. Этот элемент называется корнем уравнения (*). Например, пусть F – поле рациональных чисел и x2 – 2 = 0 – уравнение, которое требуется решить. Тогда в F не существует корня этого уравнения, но поле из третьего примера содержит такой корень, а именно число , и содержит поле F как множество всех элементов вида . Возвращаясь к общему случаю, заметим, что всегда можно найти еще более широкое поле FІ, которое содержит все корни уравнения (*) и является наименьшим из полей, обладающих этим свойством. Изучением взаимосвязи между F и FІ занимается теория Галуа, названная так в честь Э.Галуа (1811–1832). Лучше всего эта взаимосвязь выражается в терминах некоторых групп, что может служить ярким примером взаимопроникновения двух разделов алгебры. Галуа построил свою теорию в связи с исследованием следующей задачи. Давно было известно, что корни уравнения (*) первой, второй, третьей и четвертой степеней (т.е. корни уравнений a0 + a1x = 0, a0 + a1x + a2x2 = 0, a0 + a1x + a2x2 + a3x3 = 0, a0 + a1x + a2x2 + a3x3 + a4x4 = 0) могут быть явно выражены через коэффициенты ai; например, для уравнений второй степени корни имеют вид

Естественно, что делались попытки вывести аналогичные формулы для корней уравнений пятой и более высоких степеней. Н.Абелю в 1824 удалось показать, что для общего (т.е. с буквенными коэффициентами) уравнения пятой и более высоких степеней такой формулы не существует, т.е. что общее уравнение степени n і 5 неразрешимо в радикалах. После этого встал вопрос об условиях, которым должны удовлетворять коэффициенты уравнения, чтобы оно было разрешимо в радикалах. Ответ на этот вопрос был найден Галуа. В частности, согласно теории Галуа, неразрешимость в радикалах общего уравнения степени n, n і 5, связана со строением группы Sn (определенной нами ранее).

Теория полей сыграла выдающуюся роль в доказательстве неразрешимости трех знаменитых проблем древности: удвоения куба, квадратуры круга и трисекции угла.

Наконец, упомянем о том, что для любого поля F всегда существует поле F0, которое содержит все корни всех уравнений вида (*) с коэффициентами из F при всех возможных n. Если F – поле действительных или комплексных чисел, то F0 – поле комплексных чисел (наш второй пример). Эту теорему часто называют основной теоремой алгебры. Она имеет иную, эквивалентную, формулировку: любой многочлен с комплексными коэффициентами имеет корень в поле комплексных чисел. Доказательства этой теоремы давали многие известные математики (включая Эйлера и Лапласа), но К.Гаусс (1777–1855) первым доказал ее совершенно строго, без предварительного предположения о существовании корней многочлена.

назад   дальше



АЛГЕБРА АБСТРАКТНАЯ
Группы
Кольца
Поля
Векторы и матрицы
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в систему свои работы, чтобы они стали доступны всем! Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Добавить работы →

Последнее обновление -
03/12/2021

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!