Вывести на печать

Углекислый газ промышленного происхождения. В каменноугольном периоде на Земле была широко распространена древесная растительность. Бльшая часть диоксида углерода, поглощенного в то время растениями, накопилась в залежах угля и в нефтеносных отложениях. Огромные запасы этих полезных ископаемых человек научился использовать в качестве источника энергии и сейчас быстрыми темпами возвращает углекислый газ в круговорот веществ. В ископаемом состоянии находится, вероятно, ок. 4ґ1013 т углерода. За последнее столетие человечество сожгло столько ископаемого топлива, что примерно 4ґ1011 т углерода вновь поступило в атмосферу. В настоящее время в атмосфере присутствует ок. 2ґ1012 т углерода, а в ближайшие сто лет за счет сжигания ископаемого топлива эта цифра, возможно, удвоится. Однако не весь углерод останется в атмосфере: часть его растворится в водах океана, часть будет поглощена растениями, а часть – связана в процессе выветривания горных пород.

Пока нельзя предсказать, сколько углекислого газа будет содержаться в атмосфере или какое именно воздействие он окажет на климат земного шара. Тем не менее считается, что любое увеличение его содержания вызовет потепление, хотя вовсе не обязательно, что любое потепление существенно повлияет на климат. Концентрация углекислого газа в атмосфере, по результатам измерений, заметно увеличивается, хотя и небыстрыми темпами. Климатические данные по Шпицбергену и станции Литтл-Америка на шельфовом леднике Росса в Антарктиде свидетельствуют о повышении средних годовых температур примерно за 50-летний период соответственно на 5° и 2,5° С.

Воздействие космического излучения. При взаимодействии обладающих высокой энергией космических лучей с отдельными составляющими атмосферы образуются радиоактивные изотопы. Среди них выделяется изотоп углерода 14С, накапливающийся в растительных и животных тканях. Путем измерения радиоактивности органических веществ, которые давно не обмениваются углеродом с окружающей средой, можно определить их возраст. Радиоуглеродный метод зарекомендовал себя как наиболее надежный способ датирования ископаемых организмов и предметов материальной культуры, возраст которых не превышает 50 тыс. лет. Для датирования материалов, имеющих возраст в сотни тысяч лет, можно будет использовать другие радиоактивные изотопы с бльшими периодами полураспада, если будет решена принципиальная задача измерения крайне низких уровней радиоактивности (см. также РАДИОУГЛЕРОДНОЕ ДАТИРОВАНИЕ).

ПРОИСХОЖДЕНИЕ АТМОСФЕРЫ ЗЕМЛИ

Историю образования атмосферы пока не удалось восстановить абсолютно достоверно. Тем не менее выявлены некоторые вероятные изменения ее состава. Становление атмосферы началось сразу после формирования Земли. Имеются довольно веские основания полагать, что в процессе эволюции Праземли и обретения ею близких к современным размеров и массы она практически полностью утратила свою первоначальную атмосферу. Считается, что на раннем этапе Земля находилась в расплавленном состоянии и ок. 4,5 млрд. лет назад оформилась в твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени происходила и медленная эволюция атмосферы. Некоторые геологические процессы, как, например, излияния лавы при извержениях вулканов, сопровождались выбросом газов из недр Земли. В их состав, вероятно, входили азот, аммиак, метан, водяной пар, оксид и диоксид углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода с образованием углекислого газа. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным ее компонентом, хотя некоторая его часть связывалась в ходе химических реакций.

Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, вероятно присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот. Следовательно, жизнь могла зародиться в атмосфере, принципиально отличной от современной.

С появлением примитивных растений начался процесс фотосинтеза (см. также ФОТОСИНТЕЗ), сопровождавшийся выделением свободного кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений. По оценкам, наличие всего 0,00004 современного объема кислорода могло привести к формированию слоя с вдвое меньшей, чем сейчас, концентрацией озона, что тем не менее обеспечивало весьма существенную защиту от ультрафиолетовых лучей.

Вероятно также, что в первичной атмосфере содержалось много углекислого газа. Он расходовался в ходе фотосинтеза, и его концентрация должна была уменьшаться по мере эволюции мира растений, а также из-за поглощения в ходе некоторых геологических процессов. Поскольку парниковый эффект связан с присутствием углекислого газа в атмосфере, некоторые ученые полагают, что колебания его концентрации являются одной из важных причин таких крупномасштабных климатических изменений в истории Земли, как ледниковые периоды.

Присутствующий в современной атмосфере гелий, вероятно, большей частью является продуктом радиоактивного распада урана, тория и радия. Эти радиоактивные элементы испускают альфа-частицы, которые представляют собой ядра атомов гелия. Поскольку в ходе радиоактивного распада электрический заряд не образуется и не исчезает, на каждую альфа-частицу приходится два электрона. В итоге она соединяется с ними, образуя нейтральные атомы гелия. Радиоактивные элементы содержатся в минералах, рассеянных в толще горных пород, поэтому значительная часть гелия, образовавшегося в результате радиоактивного распада, сохраняется в них, очень медленно улетучиваясь в атмосферу. Некоторое количество гелия за счет диффузии поднимается вверх в экзосферу, но благодаря постоянному притоку от земной поверхности объем этого газа в атмосфере неизменен.

На основании спектрального анализа света звезд и изучения метеоритов можно оценить относительное содержание различных химических элементов во Вселенной. Концентрация неона в космосе примерно в десять миллиардов раз выше, чем на Земле, криптона – в десять миллионов раз, а ксенона – в миллион раз. Отсюда следует, что концентрация этих инертных газов, изначально присутствовавших в земной атмосфере и не пополнявшихся в процессе химических реакций, сильно снизилась, вероятно, еще на этапе утраты Землей своей первичной атмосферы. Исключение составляет инертный газ аргон, поскольку в форме изотопа 40Ar он и сейчас образуется в процессе радиоактивного распада изотопа калия.

назад   дальше



АТМОСФЕРА
ОБЩАЯ ХАРАКТЕРИСТИКА АТМОСФЕРЫ ЗЕМЛИ
Размеры
Значение для жизни
Состав
Энергообмен
Строение
Тропосфера
Стратосфера
Мезосфера
Термосфера
Экзосферой
СОЛНЕЧНО-ЗЕМНЫЕ СВЯЗИ И ИХ ВЛИЯНИЕ НА АТМОСФЕРУ
Атмосферные приливы
Ионосфера
Нормальная ионосфера
Возмущения в ионосфере
Некоторые последствия нагрева атмосферы Солнцем
АТМОСФЕРНОЕ ЭЛЕКТРИЧЕСТВО
Молния
ИЗМЕНЕНИЯ В АТМОСФЕРЕ
Воздействие метеоров и метеоритов
Углекислый газ промышленного происхождения
Воздействие космического излучения
ПРОИСХОЖДЕНИЕ АТМОСФЕРЫ ЗЕМЛИ
ОПТИЧЕСКИЕ ЯВЛЕНИЯ
Радуга
Галу
Паргелии и дуги
Короны
Глории (нимбы)
Призраки Броккена
Миражи
Огни святого Эльма
Блуждающие огоньки
Зеленый луч
Сумеречные лучи
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
18/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!