Вывести на печать

Проблемы интерпретации. До 1911 не было выдвинуто ни одной логически последовательной, непротиворечивой теории строения атома. Но в 1911 Э.Резерфорд (1871–1937) провел в Кавендишской лаборатории Кембриджского университета эксперименты, которые со всей определенностью показали, что атом в какой-то мере напоминает миниатюрную солнечную систему: его основная масса сосредоточена в положительно заряженном ядре, вокруг которого обращаются электроны, образуя облако очень малой массы. Не прошло и года, как Н.Бор (1885–1962), прибывший тогда из Дании к Резерфорду в качестве стажера, показал, как можно было бы модифицировать ньютоновскую механику, чтобы с приемлемой точностью количественно объяснить спектр водорода, простейшего из атомов. См. также АТОМА СТРОЕНИЕ.

Согласно модели Резерфорда и Бора, атом водорода состоит из тяжелого положительно заряженного ядра (называемого протоном) и примерно в 1840 раз более легкого и отрицательно заряженного электрона, движущегося вокруг ядра по круговой или эллиптической орбите. И протон, и электрон рассматривались как почти не имеющие размеров, как материальные точки, удерживаемые вместе силой притяжения разноименных электрических зарядов. Примененная к такой системе ньютоновская механика утверждает, что при соответствующим образом выбранной начальной энергии атом может иметь любые размеры. Но атомы водорода имеют вполне определенные размеры – порядка 10–8 см в диаметре. Бор ясно понимал, что законы Ньютона не могут объяснить устойчивости такой системы, как атом; действительно, из численных констант теории – масс и зарядов ядра и электрона – невозможно образовать величину, имеющую размерность длины как характерного размера атома. Но такую величину можно построить, если дополнить законы механики постоянной Планка h, которая входит в формулы, описывающие некоторые оптические явления в микроскопическом масштабе. Величины h, e и me имеют следующие значения и размерности:

Здесь meмасса электрона, масса протона mp = 1,67Ч10–24 г. Из этих констант можно составить единственно возможную комбинацию с размерностью длины h2/mee2. Бор показал, что постоянную Планка h нужно ввести в атомную механику, потребовав, чтобы момент импульса электрона, обращающегося вокруг ядра, был равен целому кратному числа h/2p, и что в таком случае теория могла бы воспроизвести все основные свойства атома водорода.

Как показали вычисления, диаметр атома водорода равен:

(1/2p2)(h2/mee2) = 1,058Ч10–8 см,

что согласуется с экспериментом. Кроме того, была выведена формула для наблюдаемых в спектре водорода линий, тоже великолепно согласующаяся со всеми экспериментальными данными.

Идеи Бора позволили не только количественно подтвердить механику атома водорода, но и заложить первые ясные основы теории, исходя из фундаментальных физических принципов. При определенных дополнительных допущениях теория Бора позволила объяснить, по крайней мере в общих чертах, почему каждый элемент обладает характерными химическими и физическими свойствами.

К 1925 возникла весьма любопытная ситуация. Теория Бора была расширена и углублена, что позволило хотя бы качественно объяснить ряд атомных и радиационных явлений и принять во внимание различные модификации простейшей модели. Кроме того, включение в теорию крайне важного открытия, сделанного в 1925 С.Гаудсмитом и Дж.Уленбеком (они показали, что, обращаясь вокруг ядра, электрон одновременно имеет собственный момент, позволило сделать первые шаги в понимании тех сложных изменений, которые претерпевает спектр атома в сильном магнитном поле. Вместе с тем 13 лет развития, начиная с 1911, не дали даже намека на решение некоторых казавшихся элементарными вопросов. Например, остались загадкой строение и спектр гелия, атом которого отличается от атома водорода лишь тем, что вокруг его ядра движутся два электрона. Кроме того, никто не мог привести более глубокого обоснования постулатов и правил Бора, если не считать констатации того, что они часто дают правильный ответ. Но в течение следующих двух лет после 1925 новые фундаментальные идеи позволили существенно прояснить ситуацию.

Эти идеи воплотились в теории, называемой ныне квантовой механикой. Подробнее с ней можно ознакомиться в статье КВАНТОВАЯ МЕХАНИКА ; мы же упомянем здесь лишь о том, что теория относительности показала неадекватность прежних интуитивных представлений о времени и пространстве, а квантовая механика убедительно продемонстрировала необходимость пересмотра распространенных представлений классической механики. Причиной пересмотра стал вывод, доминировавший на протяжении всей истории атомистических теорий: обычные человеческие органы чувств не дают надлежащей основы для понимания явлений, происходящих в микроскопических масштабах. Весь наш опыт познания механических явлений имеет дело с макроскопическими совокупностями атомов, в которых свойства отдельных атомов как таковые не проявляются, а потому не нужно удивляться, что такие понятия, как местоположение, движение и т.д., выведенные из обычного опыта (осмысленные в структуре ньютоновской механики), просто не подходят для обсуждения проблем атомных явлений. Новая теория, развитая независимо Л.де Бройлем (1923) и Э.Шрёдингером (1926), с одной стороны, и В.Гейзенбергом и М.Борном (1925) – с другой, и расширенная затем П.Дираком, В.Паули и многими другими учеными, по праву стала считаться шедевром теоретической физики нашего века, шедевром, по глубине мысли и широте своих далеко идущих следствий превосходящим даже теорию относительности. Внутренняя непротиворечивость квантовой механики и ее взаимосвязь с другими направлениями теоретической физики были основательно осмыслены Н.Бором. Эти проблемы занимали его до конца жизни.

Квантовая механика почти сразу же ответила на все вопросы старой теории Бора: было показано, что постулированные им правила с необходимостью следуют из новой теории; удалось разобраться в строении гелия и более сложных атомов; оказалось, что спин (собственный момент) частиц на удивление просто связан с ее соответствующей релятивистской формулировкой. Кроме того, по сути впервые стало возможным объяснить природу химических сил, т.е. причину, по которой два или более атомов оказываются тесно связанными (образуя молекулу, обладающую свойствами, отличными от свойств любого из образующих ее атомов). Разумеется, это не означает, будто в указанной области не осталось нерешенных вопросов, ибо новые законы не могут объяснить сами себя; их объяснение – дело будущей теории.

Теория де Бройля началась с загадки двойственной природы света. Если одни многочисленные эксперименты, проводимые с 1800, убедительно доказали, что свет распространяется в пространстве в виде волн, то другие, выполненные более чем сто лет спустя, столь же убедительно продемонстрировали, что в некоторых ситуациях луч света ведет себя как пучок частиц. Точное соответствие между волновыми и корпускулярными свойствами пучка света было установлено в работах А.Эйнштейна, А.Комптона и других ученых, показавших, что световая волна с частотой n и длиной волны l взаимодействует с веществом так, как если бы свет состоял из частиц (называемых фотонами, или квантами) с энергией

и импульсом

где h – постоянная Планка. Известно, что величины n и l для света связаны между собой соотношением

где с – скорость света; из равенства (3) следует [если (1) разделить на (2) и подставить полученное выражение для nl в (3)], что

Таким образом, это соотношение между энергией и импульсом, уже известное из теории электромагнитного излучения Максвелла и применимое к пучку света, рассматриваемому как целое, с самого начала включено в теорию отдельных квантов. См. также СВЕТ.

Де Бройль усмотрел в двойственной природе света возможность объединить физические представления о свете и веществе. Вещество, в конечном счете, состоит из частиц. Но если свет тоже проявляет себя как частицы, то нельзя ли предположить, что при определенных обстоятельствах и вещество должно вести себя как волны? Отталкиваясь от релятивистского аргумента, который мы не будем здесь воспроизводить, де Бройль решил сохранить соотношения (1) и (2), заменив, однако, для свободных частиц формулу (4) соотношением между кинетической энергией и импульсом для частиц с массой m:

Новое соотношение между частотой и длиной волны имеет вид

В заключение своей первой статьи де Бройль высказал предположение, что если его гипотеза верна, то соответствующие эксперименты должны обнаружить волновые явления интерференции и дифракции для вещества, аналогичные таким же явлениям для света.

Теория де Бройля сразу же указала на физическую подоплеку постулата Бора о моменте импульса. Предположим, что электрон движется вокруг ядра по орбите, на которой укладывается ровно n полных длин волн (рис. 1). Если орбита имеет форму окружности радиусом а, то это означает, что

(13.16 Кб)

2pa = nl (n = 1, 2, 3,...)

или, с учетом (1),

2pa = nh /p.

Преобразуя последнее соотношение, приведем его к виду

Величина, стоящая в левой части равенства (7), есть не что иное, как орбитальный момент импульса электрона; следовательно, равенство (7) – математическое выражение гипотезы Бора.

Экспериментально гипотеза де Бройля была проверена в опытах (1927) Дж.П.Томсона в Англии и К.Дэвиссона и Л.Джермера в США. В этих экспериментах пучок электронов дифрагировал на кристаллическом веществе, что позволило непосредственно измерить длину волны электрона как функцию его импульса и тем самым проверить соотношение p = h /l. В следующие несколько лет были проведены другие эксперименты, показавшие, что волновыми свойствами обладают не только электроны, но и нейтроны и даже целые атомы. В результате блестящая догадка де Бройля получила убедительное, более чем достаточное подтверждение.

назад   дальше



АТОМ
Научные основы
Проблемы интерпретации
Современная точка зрения
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в систему свои работы, чтобы они стали доступны всем! Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Добавить работы →

Последнее обновление -
06/12/2019

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!