Students.by - это живая энциклопедия белорусского студента (статьи, книги, мультимедиа). Еще мы предлагаем поиск по лучшим полнотекстовым научным хранилищам Беларуси!
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||||||
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() МНОЖЕСТВ ТЕОРИЯ. Под множеством понимается совокупность каких-либо объектов, называемых элементами множества. Теория множеств занимается изучением свойств как произвольных множеств, так и множеств специального вида независимо от природы образующих их элементов. Терминология и многие результаты этой теории широко используются в математике, например в математическом анализе, геометрии и теории вероятностей. Терминология. Если каждый элемент множества B является элементом множества A, то множество B называется подмножеством множества A. Например, если множество A состоит из чисел 1, 2 и 3, то у него существует 8 подмножеств (три из них содержат по 1 элементу, три содержат по 2 элемента, одно подмножество, по определению, есть само множество A и восьмое подмножество это пустое множество, не содержащее ни одного элемента). Запись x О A означает, что x элемент множества A, а B М A что B является подмножеством множества A. Если универсальное множество, из которого мы берем элементы всех множеств, обозначить через I, то элементы, принадлежащие I, но не входящие в A, образуют множество, называемое дополнением множества A и обозначаемое C(A) или Aў. Множество, не содержащее ни одного элемента, называется пустым множеством. Над множествами можно производить операции, напоминающие операции, производимые в арифметике над числами. Объединением A![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() ![]() ![]()
|