Вывести на печать

Тонкостенные монококи. Типичный тонкостенный монокок для транспортного самолета изготавливают обычно из тонких пластин алюминиевого сплава, которым придают форму, согласующуюся с требованиями аэродинамики. Эту оболочку подкрепляют поперечными силовыми элементами – шпангоутами, и продольными силовыми элементами – лонжеронами или стрингерами. (Эти термины относятся к конструкции фюзеляжа. В конструкции крыла продольные силовые элементы – стрингеры, а поперечные – нервюры.) На рис. 8 показано, как устроен типичный монококовый фюзеляж. (Эту конструкцию сейчас принято называть «полумонокок» или «усиленный монокок», тогда как термин «чистый монокок» или просто «монокок» используют для внешних оболочек, имеющих минимум подкрепляющих элементов или не имеющих их вовсе.)

(7.61 Кб)

Вследствие больших размеров фюзеляжа и сравнительно небольших аэродинамических нагрузок оболочку монокока делают очень тонкой (обычно от 0,5 до 1,5 мм). Такая тонкая оболочка сохраняет свою форму, если на нее действуют силы растяжения, но она коробится под действием сил сжатия или срезывающих усилий. На рис. 9 показано действие сил сжатия на металлическую пластину прямоугольной формы. Такие силы сжатия испытывают, например, металлические панели, ограниченные по краям стрингерами, на верхней части фюзеляжа, когда аэродинамические силы, действующие на хвостовое оперение самолета, направлены вверх.

(8.64 Кб)

Согласно законам механики твердого тела, критическое напряжение (т.е. нагрузка на единицу площади), при котором плоская пластина начинает коробиться, можно вычислить по формуле

где fкр – критическое напряжение, вызывающее коробление пластины, Е – модуль упругости материала, t – толщина и b – ширина пластины между опорами (в реальной конструкции это расстояние между стрингерами). Например, если панель толщиной 0,5 мм и шириной 150 мм изготовлена из алюминиевого сплава, то ее модуль упругости равен приблизительно 70 000 МПа. Подставляя эти значения в формулу (3), получим, что величина критического напряжения, при котором наступает коробление обшивки, составляет 2,8 МПа. Это значительно меньше предела текучести (280 МПа) и предела прочности (440 МПа) материала.

Материал монокока будет использоваться неэффективно, если коробление означает утрату способности пластины выдерживать нагрузку. К счастью, это не так. Испытания, проведенные Национальным институтом стандартов и технологии США, показали, что нагрузки, действующие на край панели, могут значительно превышать величину критической нагрузки, соответствующей началу коробления, поскольку нагрузка, приложенная к панели, почти полностью воспринимается полосками материала у ее краев.

Общая ширина этих полосок была названа Т.фон Карманом «эффективной шириной» пластины. Согласно его теории, предельная нагрузка, испытываемая панелью в момент ее разрушения вследствие возникновения текучести материала вблизи зажатых кромок, может быть вычислена по формуле

Здесь P – суммарная нагрузка, действующая на панель в момент разрушения, t – толщина панели, E – модуль упругости и fтек – предел текучести материала (напряжение, при котором деформация начинает увеличиваться без дальнейшего увеличения нагрузки). Расчеты по формулам (3) и (4) показывают, что критическая нагрузка, вызывающая коробление, примерно на порядок меньше предельной нагрузки, вызывающей разрушение. Этот вывод необходимо учитывать при проектировании самолета.

Использование тонких пластин в закритическом для коробления состоянии является одной из главных отличительных черт тонкостенных монококовых конструкций. Успехи в создании транспортных самолетов, бомбардировщиков и истребителей во время Второй мировой войны были бы невозможны без понимания того факта, что коробление тонкой пластины не вызывает ее разрушения. В более консервативных областях технической механики, таких, как проектирование мостов и зданий, коробление панелей не допускается. С другой стороны, тысячи самолетов летают, и при этом часть металлических пластин в их конструкциях работает в условиях коробления большую часть полетного времени. Правильно сконструированные панели, испытывающие коробление в полете, становятся абсолютно гладкими, как только самолет совершит посадку и исчезнут аэродинамические нагрузки, действующие на конструкцию в полете.

назад   дальше



АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ
ОСНОВНЫЕ ОСОБЕННОСТИ КОНСТРУКТИВНЫХ СХЕМ САМОЛЕТОВ
Аэродинамические характеристики
Весовые характеристики
Конструктивные соображения
АВИАЦИЯ ДО ПЕРВОЙ МИРОВОЙ ВОЙНЫ
Расчалочный моноплан
Расчалочный биплан
Авиационные материалы
Проблема лобового сопротивления
КАРКАСНЫЕ КОНСТРУКЦИИ
Сварные фюзеляжи из стальных трубок
Фюзеляжи с разъемными соединениями элементов
Обшивка
Крылья биплана
Моноплан с высокорасположенным крылом
Свободнонесущий моноплан
МОНОКОКОВАЯ КОНСТРУКЦИЯ
Принцип монокока
Тонкостенные монококи
Тонкостенная балка
Компоновка конструктивных элементов в тонкостенных монококах
Концепция толстостенной монококовой конструкции
Концепция сэндвича
Методы производства многослойных конструкций
Разрушение многослойной конструкции
Другие типы толстостенных оболочек
СВЕРХЗВУКОВЫЕ САМОЛЕТЫ, КОСМИЧЕСКИЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ И БАЛЛИСТИЧЕСКИЕ РАКЕТЫ
Примеры тонкостенных оболочек
АЭРОКОСМИЧЕСКИЕ МАТЕРИАЛЫ
АЭРОКОСМИЧЕСКИЕ КОНСТРУКЦИИ
Транспортные самолеты и истребители
КК «Шаттл»
Космические станции
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
29/03/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!