Вывести на печать

Измерение температуры. Если мы хотим проводить точные эксперименты и вычисления, то таких оценок температуры, как горячий, теплый, прохладный, холодный, недостаточно – нам нужна проградуированная температурная шкала. Существует несколько таких шкал, и за точки отсчета в них обычно взяты температуры замерзания и кипения воды. Четыре наиболее распространенные шкалы представлены на рис. 2. Стоградусная шкала, по которой точке замерзания воды соответствует 0°, а точке кипения 100°, называется шкалой Цельсия по имени А.Цельсия, шведского астронома, который описал ее в 1742. Полагают, что впервые применил эту шкалу шведский натуралист К.Линней. Сейчас шкала Цельсия является самой распространенной в мире. Температурная шкала Фаренгейта, в которой точкам замерзания и кипения воды соответствуют крайне неудобные числа 32 и 212°, была предложена в 1724 Г.Фаренгейтом. Шкала Фаренгейта широко распространена в англоязычных странах, но ею почти не пользуются в научной литературе. Для перевода температуры по Цельсию (°С) в температуру по Фаренгейту (°F) существует формула °F = (9/5)°C + 32, а для обратного перевода – формула °C = (5/9)(°F-32).

(11.01 Кб)

Обе шкалы – как Фаренгейта, так и Цельсия, – весьма неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды и выражается отрицательным числом. Для таких случаев были введены абсолютные шкалы температур, в основе которых лежит экстраполяция к так называемому абсолютному нулю – точке, в которой должно прекратиться молекулярное движение. Одна из них называется шкалой Ранкина, а другая – абсолютной термодинамической шкалой; температуры по ним измеряются в градусах Ранкина (°R) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля, а точка замерзания воды соответствует 491,7° R и 273,16 K. Число градусов и кельвинов между точками замерзания и кипения воды по шкале Цельсия и абсолютной термодинамической шкале одинаково и равно 100; для шкал Фаренгейта и Ранкина оно тоже одинаково, но равно 180. Градусы Цельсия переводятся в кельвины по формуле K = °C + 273,16, а градусы Фаренгейта – в градусы Ранкина по формуле °R = °F + 459,7.

В основе действия приборов, предназначенных для измерения температуры, лежат разные физические явления, связанные с изменением тепловой энергии вещества, – изменения электрического сопротивления, объема, давления, излучательных характеристик, термоэлектрических свойств. Один из наиболее простых и знакомых инструментов для измерения температуры – ртутный стеклянный термометр, изображенный на рис. 3,а. Шарик с ртутью в нижней части термометра располагают в среде или прижимают к предмету, температуру которого хотят измерить, и в зависимости от того, получает шарик тепло или отдает, ртуть расширяется или сжимается и ее столбик поднимается или опускается в капилляре. Если термометр заранее проградуирован и снабжен шкалой, то можно прямо узнать температуру тела.

Другой прибор, действие которого основано на тепловом расширении, – биметаллический термометр, изображенный на рис. 3,б. Основной его элемент спиральная пластинка из двух спаянных металлов с разными коэффициентами теплового расширения. При нагревании один из металлов расширяется сильнее другого, спираль закручивается и поворачивает стрелку относительно шкалы. Такие устройства часто используют для измерения температуры воздуха в помещениях и на улице, однако они не подходят для определения локальной температуры.

(10.50 Кб)

Локальную температуру измеряют обычно с помощью термопары, представляющей собой две проволочки из разнородных металлов, спаянные с одного конца (рис. 4,а). При нагревании такого спая на свободных концах проволочек возникает ЭДС, обычно составляющая несколько милливольт. Термопары делают из разных металлических пар: железа и константана, меди и константана, хромеля и алюмеля. Их термо-ЭДС практически линейно меняется с температурой в широком температурном диапазоне.

(15.31 Кб)

Известен и другой термоэлектрический эффект – зависимость сопротивления проводящего материала от температуры. Он лежит в основе работы электрических термометров сопротивления, один из которых изображен на рис. 4,б. Сопротивление небольшого термочувствительного элемента (термопреобразователя) – обычно катушки из тонкой проволоки – сравнивают с сопротивлением проградуированного переменного резистора, используя мост Уитстона. Выходной прибор может быть проградуирован непосредственно в градусах.

Для измерения температуры раскаленных тел, испускающих видимый свет, используют оптические пирометры. В одном из вариантов этого устройства свет, излучаемый телом, сравнивают с излучением нити лампы накаливания, помещенной в фокальную плоскость бинокля, через который смотрят на излучающее тело. Электрический ток, нагревающий нить лампы, изменяют до тех пор, пока при визуальном сравнении свечения нити и тела не обнаружится, что между ними установилось тепловое равновесие. Шкала прибора может быть проградуирована непосредственно в единицах температуры.

Технические достижения последних лет позволили создать новые датчики температуры. Например, в тех случаях, когда нужна особенно высокая чувствительность, вместо термопары или обычного термометра сопротивления используют полупроводниковое устройство – термистор. В качестве термопреобразователей применяют также изменяющие свое фазовое состояние красители и жидкие кристаллы, особенно в тех случаях, когда температура поверхности тела изменяется в широком диапазоне. Наконец, используется инфракрасная термография, в которой получают ИК-изображение объекта в условных цветах, где каждый цвет отвечает определенной температуре. Этот способ измерения температуры находит самое широкое применение – от медицинской диагностики до проверки теплоизоляции помещений. См. также ФИЗИКА ТВЕРДОГО ТЕЛА; ЖИДКИЙ КРИСТАЛЛ.

назад   дальше



ТЕПЛОТА
ТЕПЛОТА И ТЕМПЕРАТУРА
Тепловое равновесие
Измерение температуры
Измерение количества теплоты
Единицы измерения теплоты
Источники теплоты
ТЕРМОДИНАМИКА
Начала термодинамики
Теплота и свойства веществ
Молекулярно-кинетическая теория
ТЕПЛОПЕРЕДАЧА
Теплопроводность
Конвекция
Лучистый теплообмен
РОЛЬ ТЕПЛОТЫ И ЕЕ ИСПОЛЬЗОВАНИЕ
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в систему свои работы, чтобы они стали доступны всем! Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Добавить работы →

Последнее обновление -
16/01/2021

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!