Students.by - это живая энциклопедия белорусского студента (статьи, книги, мультимедиа). Еще мы предлагаем поиск по лучшим полнотекстовым научным хранилищам Беларуси!
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() Спектроскопия комбинационного рассеяния. Спектроскопия комбинационного рассеяния это двухфотонная спектроскопия, основанная на неупругом рассеянии, при котором молекула переходит в нижнее возбужденное состояние, обмениваясь двумя фотонами с полем излучения. В этом процессе поглощается фотон накачки, а испускается рамановский фотон. При этом разность частот двух фотонов равна частоте перехода. В случае равновесной заселенности (заселенность начального состояния больше, чем конечного) частота комбинационного перехода меньше, чем у фотона накачки; она называется стоксовой частотой. В противном случае (заселенность комбинационных уровней инвертирована) испускается «антистоксово» излучение с большей частотой. Поскольку в случае двухфотонного перехода четность начального и конечного состояний должна быть одинакова, комбинационное рассеяние дает информацию, дополнительную по отношению к спектрам ИК-поглощения, которое требует изменения четности. КАКР. В методе когерентного антистоксова комбинационного рассеяния (КАКР) используется испускание когерентного света. В процессе КАКР две падающие на образец интенсивные световые волны с частотами n1 и n2 вызывают испускание излучения с частотой 2n1 n2. Процесс резко усиливается, когда разность частот n1 n2 равна частоте комбинационного перехода. Это дает возможность измерять разность энергий комбинационных уровней. Метод КАКР отличается высокой чувствительностью. Спектральный анализ давно применяется в химии и материаловедении для определения следовых количеств элементов. Методы спектрального анализа стандартизованы, информация о характерных линиях большинства элементов и многих молекул хранится в компьютерных базах данных, что в значительной мере ускоряет анализ и идентификацию химических веществ.
Чрезвычайно эффективным методом контроля за состоянием воздушной среды является лазерная спектроскопия. Она позволяет измерять размер и концентрацию находящихся в воздухе частиц, определять их форму, а также получать данные о температуре и давлении паров воды в верхних слоях атмосферы. Такие исследования проводятся методом лидара (лазерной локации ИК-диапазона).
Спектроскопия открыла широкие возможности для получения информации фундаментального характера во многих областях науки. Так, в астрономии собранные с помощью телескопов спектральные данные об атомах, ионах, радикалах и молекулах, находящихся в звездном веществе и межзвездном пространстве, способствовали углублению наших знаний о таких сложных космологических процессах, как образование звезд и эволюция Вселенной на ранней стадии развития.
До сих пор для определения структуры биологических объектов широко применяется спектроскопический метод измерения оптической активности веществ. По-прежнему при изучении биологических молекул измеряются их спектры поглощения и флуоресценция. Флуоресцирующие при лазерном возбуждении красители используются для определения водородного показателя и ионных сил в клетках, а также для исследования специфических участков в белках. С помощью резонансного комбинационного рассеяния зондируется структура клеток и определяется конформация молекул белков и ДНК. Важную роль сыграла спектроскопия при изучении фотосинтеза и биохимии зрения. Все большее применение находит лазерная спектроскопия и в медицине. Диодные лазеры используются в оксиметре приборе, определяющем насыщенность крови кислородом по поглощению излучения двух разных частот ближней ИК-области спектра. Изучается возможность использования лазерно-индуцируемой флуоресценции и комбинационного рассеяния для диагностики рака, болезней артерий и ряда других заболеваний.
|
![]() |
![]() |
![]() ![]() ![]()
|