Вывести на печать

Микроволновое излучение. Излучение с длинами волн примерно от 0,5 мм до 30 см (частотный интервал от 600 000 до 1000 МГц) относится к микроволновому диапазону спектра. Для генерации микроволнового излучения применяются специальные электронные лампы (клистроны). Бурное развитие микроволновая техника получила в период Второй мировой войны в связи с резко возросшими требованиями к эффективности средств связи и радиолокации. Микроволновое излучение естественных источников обусловлено главным образом вращением молекул, хотя известны и СВЧ-спектры атомов. Исследование микроволновых вращательных спектров молекул является одни из самых точных методов определения структуры молекул газа.

Инфракрасное излучение. Инфракрасное (ИК) излучение было открыто английским астрономом В.Гершелем в 1800. Пользуясь простым термометром, он установил, что тепловое излучение имеет наибольшую интенсивность за пределами видимой области вблизи его красной границы. Инфракрасная область спектра начинается примерно от 0,8 мкм и простирается примерно до 1 мм. Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней ИК-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами – детекторами, чувствительными к нагреву инфракрасным излучением.

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте.

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов.

Видимая область. Видимой области соответствует диапазон длин волн от 400 нм (фиолетовая граница) до 760 нм (красная граница), что составляет ничтожную часть полного электромагнитного спектра. Источниками видимого света в лаборатории обычно служат раскаленные твердые тела, электрический разряд и лазеры (обычно лазеры на красителях). Перестраиваемые лазеры на красителях позволяют перекрывать большие участки видимого спектра (например, краситель родамин 6G излучает в интервале 570–660 нм). Наиболее распространенными детекторами видимого излучения являются глаз человека, фотопластинки, фотоэлементы, фотоумножители. Видимые спектры связаны с квантовыми переходами внешних электронов атомов и молекул и содержат важнейшую информацию об их электронной структуре.

Ультрафиолетовое излучение. Ультрафиолетовая (УФ) спектральная область была открыта в 1801, когда И.Риттер и У.Волластон, наблюдая солнечный спектр, обнаружили, что наибольшее почернение хлорида серебра вызывается излучением, более коротковолновым, нежели фиолетовое. К УФ-области относится излучение с длинами волн от 10 до 400 нм. УФ-излучение с длинами волн короче 185 нм поглощается воздухом, поэтому приборы для этого диапазона должны быть вакуумными. Поскольку лишь немногие из обычно прозрачных веществ остаются прозрачными для «вакуумного ультрафиолета», в таких приборах применяется отражательная оптика. Для регистрации ультрафиолетового излучения используются специальные фотопластинки и фотоэлектрические детекторы. Большинство УФ-спектров связано с квантовыми переходами внешних электронов атомов и молекул, поэтому УФ-спектроскопия применяется для исследования строения атомов.

Рентгеновское излучение. В 1895 было сделано одно из самых важных открытий физики: В.Рентген, изучая электрические разряды в газах, заметил, что бумажный экран, подвергнутый специальной обработке, начинает светиться, если его поднести к работающей газоразрядной трубке, и сделал вывод, что свечение возникает под действием нового, неизвестного проникающего излучения, названного им X-лучами. Из дальнейших экспериментов выяснилось, что X-лучи – это электромагнитное излучение, длинноволновая граница которого перекрывается с вакуумным ультрафиолетом, а коротковолновая составляет малую долю нанометра.

Рентгеновское излучение с непрерывным спектром часто называют тормозным излучением, поскольку оно возникает при замедлении электронов, бомбардирующих анод рентгеновской трубки. См. также РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ.

назад   дальше



СПЕКТР
Классификация спектров
Линии Фраунгофера
Исследования Кирхгофа
СПЕКТРАЛЬНЫЕ ОБЛАСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Радиоволны
Микроволновое излучение
Инфракрасное излучение
Видимая область
Ультрафиолетовое излучение
Рентгеновское излучение
Гамма-излучение
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
24/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!