Вывести на печать

Ядерная связь. Первоначальное предположение Праута о том, что все атомные массы должны быть целыми кратными массы атома водорода, очень близко к истине, в частности, применительно к изотопам. Отклонения крайне малы, всегда не более 1%, а в большинстве случаев не более 0,1%. Детальное изучение масс изотопов доведено до высочайшей степени совершенства: погрешность измерения в настоящее время, как правило, не превышает нескольких миллионных.

Установлено, что число нейтронов примерно совпадает с числом протонов в атоме, т.е.

В действительности в более тяжелых ядрах имеется некоторый избыток нейтронов. Поскольку нейтрон не заряжен, силы, удерживающие нейтроны и протоны в ядре, по своей природе не являются электростатическими; кроме того, одноименные заряды отталкиваются. То обстоятельство, что ядра очень трудно расщепить, указывает на существование больших сил ядерного притяжения. Несмотря на малость расстояний, гравитационное притяжение между нуклонами все же слишком слабо, чтобы обеспечить стабильность ядра.

Согласно Эйнштейну, полная энергия изолированной системы сохраняется, а масса является одной из форм энергии: E = mc2. Чтобы расщепить такую связанную систему, как ядро стабильного атома, на составляющие ее нейтроны и протоны, ей необходимо сообщить энергию. Это означает, что масса нейтронов и протонов превышает массу ядра на величину

DM = ZMp + NMn – MA,Z,

где Mp и Mnмассы свободного протона и нейтрона, а MA,Z – масса ядра с зарядом Z и массовым числом А. Эта разница масс, выраженная в единицах энергии, называется энергией связи. Коэффициент для пересчета таков:

1 а.е.м. = 931,14 МэВ,

где 1 МэВ = 106 эВ. Таким образом, энергия связи EB = DMc2 есть энергия, необходимая для расщепления ядра на отдельные нейтроны и протоны.

Средняя энергия связи, приходящаяся на один нуклон, EB/A, довольно регулярно изменяется с увеличением числа нуклонов в ядре (рис. 3). Самым легким ядром после протона является дейтрон 21H, расщепление которого требует энергии 2,2 МэВ, т.е. 1,1 МэВ на нуклон. Альфа-частица 42He связана гораздо сильнее, чем ее соседи: ее энергия связи составляет 28 МэВ. У ядер с массовым числом, превышающим 20, средняя энергия связи, приходящаяся на нуклон, остается почти постоянной, равной примерно 8 МэВ.

(9.17 Кб)

Энергия связи ядер на много порядков величины превышает энергию связи валентных электронов в атоме и атомов в молекуле. Чтобы удалить из атома водорода его единственный электрон, достаточно энергии 13,5 эВ; для удаления же внутренних электронов в свинце, связанных наиболее прочно, необходима энергия, равная 0,1 МэВ. Следовательно, все ядерные процессы связаны с энергиями, значительно превышающими те, с которыми мы имеем дело в обычных химических реакциях или при обычных температурах и давлениях.

назад   дальше



АТОМНОГО ЯДРА СТРОЕНИЕ
Открытие изотопов
Открытие нейтрона
Ядерная связь
Естественная радиоактивность
Искусственные превращения ядер
Энергетические уровни ядер и ядерные модели
Составное ядро и модель капли
Размеры и форма ядра
Ядерные силы и мезоны
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
18/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!