Вывести на печать

ИЗМЕРЕНИЯ И ВЗВЕШИВАНИЕ. Измерения служат для получения точного, объективного и легко воспроизводимого описания физической величины. Не производя измерений, нельзя охарактеризовать физическую величину количественно. Чисто словесные определения – «низкая» или «высокая» температура, «низкое» или «высокое» напряжение – неадекватны, так как они не содержат сравнения с известными эталонами и, следовательно, отражают лишь субъективные мнения. При измерении физической величины ей приписывается некоторое численное значение.

Фундаментальные и производные измерения. К фундаментальным измерениям относят те, на которых производится прямое сопоставление с первичными эталонами массы, длины и времени. (Недавно к ним добавили эталоны электрического заряда и температуры.) Так, длину измеряют с помощью линейки или кронциркуля, угол – посредством транспортира или теодолита, массу – используя равноплечные рычажные весы и т.д. Число, показывающее, сколько раз соответствующий эталон (или кратная ему единица) «укладывается» в измеряемой величине, и является фундаментальной мерой этой величины.

К производным измерениям относят те, в которых участвуют вторичные, или производные, физические единицы, такие, как площадь, объем, плотность, давление, скорость, ускорение, импульс и т.д. Измерение таких производных величин сопровождается математическими операциями с основными, или фундаментальными, единицами. Так, при измерении (определении) площади прямоугольника сначала измеряют основание и высоту и затем их перемножают. Плотность вещества определяют посредством деления его массы на объем (который, в свою очередь, является производной величиной). Вычисление средней скорости включает в себя измерения расстояния, преодоленного за единицу времени. При выполнении производных измерений используют, как правило, приборы, проградуированные непосредственно в терминах величин, подлежащих измерению, что исключает необходимость каких-либо математических вычислений. Таким образом, соответствующее математическое уравнение «содержится» в самом приборе.

Прямые и косвенные измерения. В зависимости от способа получения количественных данных измерения разделяют на прямые и косвенные. При прямых измерениях измеряемая величина выражается в тех же единицах, что и эталон, используемый для измерений. Например, на равноплечных рычажных весах неизвестную массу сравнивают с эталонной, а линейкой определяют неизвестную длину в терминах эталонной. С другой стороны, результатом измерения температуры с помощью градусника оказывается высота столба жидкости, заполняющей стеклянную трубку. В этом косвенном методе измерения температуры предполагают существование линейной зависимости между приращениями температуры и высоты столбика ртути или спирта в термометре.

Косвенные измерения осуществляются с помощью датчиков, которые сами по себе не являются измерительными инструментами, а выполняют роль преобразователей информации. Например, пьезоэлектрический датчик из титаната бария генерирует электрическое напряжение, изменяя свои размеры под действием механической нагрузки. Следовательно, измеряя это напряжение, можно определить такие чисто механические величины, как деформации, моменты или ускорения. Другой тензометрический датчик преобразует механическое перемещение (удлинение, сокращение или поворот) в изменение электрического сопротивления. Значит, измеряя последнюю величину, можно косвенно, но с высокой точностью определить такие механические характеристики, как силы растяжения – сжатия или момент кручения. Электрическое сопротивление фоторезистора из сернистого кадмия уменьшается, когда датчик облучают светом. Следовательно, чтобы определить величину освещенности, воспринимаемой датчиком, необходимо только измерить его сопротивление. Некоторые чувствительные к измерениям температуры оксиды металлов, называемые терморезисторами, характеризуются заметными изменениями электрического сопротивления при изменении температуры. В этом случае также достаточно измерить электрическое сопротивление, чтобы определить значение температуры. Один из видов расходомеров позволяет преобразовать в расход потока линейно связанное с ним число оборотов ротора, вращающегося в постоянном магнитном поле.

Линейные и нелинейные измерительные устройства. Наиболее простым типом измерительного датчика является «линейное» устройство, в котором выходная информация (показание прибора) прямо пропорциональна воспринимаемой прибором входной информации. В качестве примера рассмотрим эмиссионный фотоэлемент (с внешним фотоэффектом), который состоит из двух электродов, изготовленных из чистых металлов (один из них является светочувствительным). Электроды заключены в стеклянную вакуумную трубку и подсоединены к источнику постоянного тока, разность потенциалов которого можно варьировать. К этому устройству подсоединяется микроамперметр, проградуированный в единицах освещенности. Такое комбинированное устройство представляет собой фотоэлектрической фотометр, для которого измеряемой величиной является свет, а выходной – электрический ток. Чем выше освещенность (при постоянной разности потенциалов на электродах), тем большее число электронов испускает фотокатод (отрицательный электрод). Рабочая характеристика этого прибора является существенно линейной в широком диапазоне значений освещенности, и поэтому он имеет равномерную шкалу.

Примером существенно нелинейного прибора является омметр, служащий для измерения электрического сопротивления в собственных единицах (Ом). Прибор содержит высокочувствительный датчик электрического тока с миниатюрным элементом питания и защитный резистор, которые соединяются последовательно. Так как кривая зависимости тока от сопротивления при постоянном напряжении является гиперболой, то и связь между входной и выходной величинами у этого прибора существенно нелинейна. Шкала такого прибора будет «измельчаться» в диапазоне больших сопротивлений (малых токов). Этот прибор необходимо тщательно проградуировать, прежде чем он будет пригоден для измерения неизвестных сопротивлений.

Другим примером нелинейного устройства измерительного является термоэлектрический датчик (термопара). В электрической цепи, составленной из двух различных металлов, стыки (спаи) которых поддерживают при различных температурах, создается разность потенциалов, которая тем больше, чем выше температура т.н. «горячего» спая. Однако, если исследовать зависимость разности потенциалов от температуры для пары металлов железо – медь, обнаружится, что разность потенциалов растет практически линейно только до температуры 150° С; она достигает максимума при 200° С и затем уменьшается, обращаясь в нуль при температуре около 600° С. Этот измерительный инструмент также требует тщательной градуировки (при нескольких известных значениях температуры и разности потенциалов), для того чтобы можно было адекватно использовать его нелинейную характеристику.

дальше



ИЗМЕРЕНИЯ И ВЗВЕШИВАНИЕ
Фундаментальные и производные измерения
Прямые и косвенные измерения
Линейные и нелинейные измерительные устройства
Погрешности измерений
Систематические погрешности
Случайные погрешности
Ошибки наблюдателя
Погрешности, обусловленные внешними влияниями
Минимизация погрешностей
Нулевой (компенсационный) метод
Метод вычитания
Метод средних
Другие методы
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
20/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!