Вывести на печать

Электрическая тяга. Термином «суда с электрической тягой» называют суда, у которых одним из элементов системы преобразования энергии топлива в механическую энергию вращения гребного вала является электрическая машина. Один или несколько электродвигателей соединяются с валом винта напрямую или через редуктор. Питание электродвигателей осуществляется от электрогенераторов, приводом которых служит паровая или газовая турбина либо дизель. На подводных лодках в подводном положении питание электродвигателей осуществляется от аккумуляторов, а в надводном – от дизель-генераторов. Электрические машины постоянного тока обычно устанавливаются на небольших и на высокоманевренных судах. Машины переменного тока используются на океанских лайнерах.

Турбоэлектроходы. На рис. 1 представлена схема турбоэлектропривода с котельной установкой для получения пара. Пар вращает турбину, которая, в свою очередь, вращает электрогенератор. Выработанная электроэнергия подается на электродвигатели, которые связаны с гребным валом. Обычно каждый турбогенератор работает на один электродвигатель, который вращает свой винт. Однако такая схема позволяет легко подсоединить к одному турбогенератору несколько электродвигателей, а следовательно, несколько гребных винтов.

(16.85 Кб)

Судовые турбогенераторы переменного тока могут вырабатывать ток с частотой в пределах 25100% максимальной, но не более 100 Гц. Генераторы переменного тока вырабатывают ток напряжением до 6000 В, постоянного – до ~900 В.

Дизельэлектроходы. Дизельэлектрический привод по существу не отличается от турбоэлектрического, за исключением того, что котельная установка и паровая турбина заменены дизельным двигателем.

На небольших судах обычно на каждый винт работают один дизель-генератор и один электродвигатель, однако при необходимости можно отключить один дизель-генератор для экономии или включить дополнительный для увеличения мощности и скорости.

КПД. Электродвигатели постоянного тока на низких оборотах создают больший крутящий момент, чем турбины и дизели с механической передачей. Кроме того, у двигателей и постоянного и переменного тока крутящий момент одинаков как при прямом, так и при обратном вращении.

Полный КПД турбоэлектропривода (отношение мощности на гребном валу к энергии топлива, выделяющейся в единицу времени) ниже, чем КПД турбинного привода, хотя турбина и соединена с гребным валом через два понижающих редуктора. Турбоэлектропривод тяжелее и дороже механического турбинного привода. Полный КПД дизельэлектропривода примерно такой же, как у механического турбинного привода. Каждый тип привода имеет свои достоинства и недостатки. Поэтому выбор типа двигательной установки определяется типом судна и условиями его эксплуатации.

Электроиндукционная муфта. В этом случае передача мощности от двигателя к гребному винту производится электромагнитным полем. Принципиально такой привод подобен обычному асинхронному электродвигателю, за исключением того, что и статор и якорь электродвигателя в электромагнитном приводе сделаны вращающимися; один из них связан с валом двигателя, а другой – с гребным валом. Элемент, связанный с двигателем, представляет собой обмотку возбуждения, которая питается от внешнего источника постоянного тока и создает электромагнитное поле. Элемент, связанный с гребным валом, представляет собой короткозамкнутую обмотку без внешнего питания. Оба элемента разделены воздушным промежутком. Вращающееся магнитное поле возбуждает в обмотке второго элемента ток, что заставляет этот элемент вращаться, но всегда медленнее (со скольжением), чем первый элемент. Возникающий крутящий момент пропорционален разности частот вращения этих элементов. Выключение тока возбуждения в первичной обмотке «разъединяет» эти элементы. Частоту вращения второго элемента можно регулировать, меняя ток возбуждения. При одном дизельном двигателе на судне использование электромагнитного привода позволяет снизить вибрации благодаря отсутствию механической связи двигателя с гребным валом; при нескольких дизельных двигателях такой привод повышает маневренность судна за счет переключения гребных винтов, поскольку направление их вращения легко изменить.

назад   дальше



СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ
ТИПЫ СУДОВЫХ УСТАНОВОК
Поршневые паровые машины
Паровые турбины
Газовые турбины
Дизельные двигатели
Внедрение дизелей
Сравнение дизельных двигателей с паровыми
Судовые дизели
Электрическая тяга
Турбоэлектроходы
Дизельэлектроходы
Электроиндукционная муфта
Атомные энергетические установки
Безопасность
Судовые ядерные реакторы
Защита
Экономичность судов с атомными энергетическими установками
СУДОВЫЕ ДВИЖИТЕЛИ
Водометный движитель
Гребное колесо
Гребные винты
Конструкция и характеристики
Применение
Винт с направляющей насадкой
Принцип действия
Преимущества
Крыльчатые движители
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
25/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!