Вывести на печать

Газовая пушка. Газовая пушка состоит из трех основных частей, показанных на рис. 3: секции сжатия, ограничительной секции и пускового ствола. Обычный пороховой заряд поджигается в каморе, что заставляет поршень двигаться по стволу секции сжатия и сжимать газообразный гелий, заполняющий канал ствола. Когда давление гелия нарастает до определенного уровня, разрывается диафрагма. Резкий прорыв газа под высоким давлением выталкивает снаряд из пускового ствола, а ограничительная секция останавливает поршень. Скорости снаряда, выпущенного газовой пушкой, могут достигать 5 км/с, тогда как для обычного орудия это максимум 2000 м/с. Более высокая эффективность газовой пушки объясняется малой молекулярной массой рабочего вещества (гелия) и соответственно высокой скоростью звука в гелии, воздействующем на донную часть снаряда.

(17.03 Кб)

Реактивные системы. Ствольные системы разгона снаряда перестают удовлетворять все возрастающим требованиям военных в отношении дальнобойности, скорострельности, точности стрельбы и универсальности. Усилиями науки и техники ракетные и воздушно-реактивные двигатели достигли такого совершенства, что современные виды баллистического оружия строятся почти исключительно на реактивной тяге. Широко распространены ракетные двигатели на жидком (ЖРД) и на твердом (РДТТ) топливе. См. также РАКЕТА ; РАКЕТНОЕ ОРУЖИЕ.

Реактивные пусковые установки выполняют в основном те же функции, что и артиллерийские орудия. Такая установка играет роль неподвижной опоры и обычно задает начальное направление полета реактивного снаряда. При пуске управляемой ракеты, имеющей, как правило, бортовую систему наведения, точная наводка, необходимая при стрельбе из орудия, не требуется. В случае же неуправляемых ракет направляющие пусковой установки должны вывести ракету на траекторию, ведущую к цели.

ВНЕШНЯЯ БАЛЛИСТИКА

Внешняя баллистика занимается движением снарядов в пространстве между пусковой установкой и целью. Когда снаряд приведен в движение, его центр масс прочерчивает в пространстве кривую, называемую траекторией. Основная задача внешней баллистики состоит в том, чтобы описать эту траекторию, определив положение центра масс и пространственное положение снаряда в функции времени полета (времени после запуска). Для этого нужно решить систему уравнений, в которых учитывались бы силы и моменты сил, действующие на снаряд.

Вакуумные траектории. Самый простой из частных случаев движения снаряда – движение снаряда в вакууме над плоской неподвижной земной поверхностью. В этом случае предполагается, что на снаряд не действуют никакие другие силы, кроме земного тяготения. Уравнения движения, соответствующие такому предположению, легко решаются и дают траекторию параболической формы.

Траектории материальной точки. Другой частный случай – движение материальной точки; здесь снаряд рассматривается как материальная точка, и учитываются его лобовое сопротивление (сила сопротивления воздуха, действующая в обратном направлении по касательной к траектории и замедляющая движение снаряда), сила тяжести, скорость вращения Земли и кривизна земной поверхности. (Вращение Земли и кривизну земной поверхности можно не учитывать, если время полета по траектории не очень велико.) Следует сказать несколько слов о лобовом сопротивлении. Сила лобового сопротивления D, оказываемого движению снаряда, дается выражением

D = rSv2CD(M),

где r – плотность воздуха, S – площадь поперечного сечения снаряда, v – скорость движения, а CD(M) – безразмерная функция числа Маха (равного отношению скорости снаряда к скорости звука в среде, в которой движется снаряд), называемая коэффициентом лобового сопротивления. Вообще говоря, коэффициент лобового сопротивления снаряда можно определить экспериментально в аэродинамической трубе или на испытательном полигоне, оснащенном точным измерительным оборудованием. Задача облегчается тем, что для снарядов разного диаметра коэффициент лобового сопротивления одинаков, если они имеют одинаковую форму.

Теория движения материальной точки (хотя в ней не учитываются многие силы, действующие на реальный снаряд) с очень хорошим приближением описывает траекторию ракет после прекращения работы двигателя (на пассивном участке траектории), как и траекторию обычных артиллерийских снарядов. Поэтому она широко применяется для вычисления данных, используемых в системах прицеливания оружия такого рода.

назад   дальше



БАЛЛИСТИКА
ВНУТРЕННЯЯ БАЛЛИСТИКА
Ствольные системы ускорения
Газовая пушка
Реактивные системы
ВНЕШНЯЯ БАЛЛИСТИКА
Вакуумные траектории
Траектории материальной точки
Траектории твердого тела
Применение
Траектории управляемых снарядов
БАЛЛИСТИКА В КОНЕЧНОЙ ТОЧКЕ
Взрыв
Осколки и пробивная способность
Раневая баллистика
Броня
Горение
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
19/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!