Вывести на печать

Высотное регулирование двигателя. Из сказанного выше следует, что самолеты с малыми скоростями взлета и посадки могут летать эффективно с большими скоростями только на больших высотах. Однако мощность двигателя, необходимая для поддержания установившегося горизонтального полета, увеличивается пропорционально скорости и обратно пропорционально квадратному корню из плотности воздуха при увеличении высоты полета. В то же время мощность воздушно-реактивного двигателя изменяется пропорционально плотности воздуха. Следовательно, чтобы осуществить экономичный высокоскоростной полет на больших высотах, потребуется двигатель с «переразмеренными» воздухозаборниками, который на малых высотах работает в режиме дросселирования. Это позволяет ослабить требования к характеристикам прочности двигателя и снизить его вес.

Средства механизации крыла. Скорость сваливания самолета можно несколько уменьшить с помощью закрылков, устанавливаемых вдоль задней кромки крыла. При отклонении закрылков уменьшается угол атаки крыла в полете с малыми скоростями; при этом летчик может лучше видеть место предполагаемой посадки. Закрылки также увеличивают силу аэродинамического сопротивления самолета и в значительной степени гасят тенденцию самолета снова взмыть вверх после первого касания земли («дать козла», как говорят летчики). Рис. 6 иллюстрирует применение закрылков при посадке самолета.

(24.24 Кб)

Пружинный сервокомпенсатор. Система управления полетом должна быть такой, чтобы пилот мог управлять самолетом с помощью одной руки, используя другую для настройки бортовой радиостанции, регулирования мощности двигателя или выполнения каких-либо других операций. Желательно, чтобы пилоту не нужно было прилагать усилия свыше 0,25 кН на расстояниях не более ~45 см. Сила давления на педаль не должна превышать 0,80 кН, а ход педали – 25 см. Эти условия должны быть выполнены для того, чтобы работа летчика не была физически утомительной, хотя сила, необходимая для отклонения элерона, увеличивается пропорционально квадрату скорости полета и третьей степени размаха крыла. Кроме того, сила, приложенная к рулю высоты при выполнении какого-либо маневра, может возрастать пропорционально третьей или четвертой степени длины фюзеляжа (массе самолета). Сила давления на педаль руля направления также пропорциональна третьей или четвертой степени размаха крыла. Таким образом, летчику не по силам управлять самолетом без вспомогательных устройств. На рис. 7 показано типичное аэродинамическое устройство, позволяющее умерить управляющие усилия летчика. Ручка управления, находящаяся в пилотской кабине, связана с рулями высоты посредством сервокомпенсаторов и пружин (последние используются при небольших скоростях полета). Сервокомпенсаторы этого типа были разработаны А.Флетнером (1885–1961) в Германии. Они успешно применялись на дозвуковых самолетах, масса которых достигала 150 т.

(12.69 Кб)

Руль высоты в виде закрылка. При дозвуковых скоростях полета руль высоты, подвешенный на шарнирах к задней балке горизонтального стабилизатора, весьма эффективен, так как при его отклонении на стабилизаторе появляется дополнительная управляющая сила (рис. 8). Однако при трансзвуковых и сверхзвуковых скоростях полета его эффективность снижается.

(15.98 Кб)

Органы управления полетом при сверхзвуковых скоростях. Для самолетов нормальной схемы также характерен существенный сдвиг аэродинамического фокуса (центра давления) при переходе от дозвуковых к трансзвуковым и сверхзвуковым скоростям полета. Эти два обстоятельства стали причиной аварий ряда первых трансзвуковых самолетов вследствие их резкого затягивания в пикирование (термин «звуковой барьер» связан с этим опасным явлением ухудшения характеристик устойчивости и управляемости при околозвуковых скоростях полета). Впервые звуковой барьер был преодолен на экспериментальном самолете «Белл» X-1 в 1946. Этот самолет был оборудован регулируемым по углам атаки стабилизатором, который сохранял свою эффективность при трансзвуковых и сверхзвуковых скоростях полета. Такие регулируемые органы управления используются в настоящее время на всех трансзвуковых и сверхзвуковых самолетах. Применение гидроусилителей для позиционирования органов управления позволило решить проблему управляемости трансзвуковых и сверхзвуковых самолетов с рулями высоты в виде закрылков, элеронами и рулем направления традиционной схемы.

назад   дальше



ПОЛЕТА ТЕОРИЯ И ПРАКТИКА
ПРАКТИЧЕСКАЯ АЭРОДИНАМИКА
Достижения братьев Райт
Скорость сваливания
Удлинение крыла
Крейсерская скорость
Высотное регулирование двигателя
Средства механизации крыла
Пружинный сервокомпенсатор
Руль высоты в виде закрылка
Органы управления полетом при сверхзвуковых скоростях
Сверхзвуковые компоновки
РЕШЕНИЕ ПРОБЛЕМ ПРОЧНОСТИ
Флаттер
Бипланы
Первые монопланы
Современные монопланы
Сверхзвуковой самолет
АВИАЦИОННЫЕ ПРИБОРЫ
Спиральная неустойчивость
Гироскопические датчики
Полет по приборам
Автопилоты
УРАВНЕНИЕ БРЕГЕ
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
19/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!