Вывести на печать

АЭРОДИНАМИКА, раздел механики сплошных сред, в котором изучаются закономерности движения воздуха и других газов, а также характеристики тел, движущихся в воздухе. К аэродинамическим характеристикам тел относятся подъемная сила и сила сопротивления и их распределения по поверхности, а также тепловые потоки к поверхности тела, вызванные его движением в воздухе. В аэродинамике рассматриваются такие тела, как самолеты, ракеты, воздушно-космические летательные аппараты и автомобили. В атмосферной аэродинамике изучаются процессы диффузии твердых частиц (например, дыма, смога, пыли) в атмосфере и аэродинамические силы, действующие на здания и другие сооружения. Ниже рассматриваются проблемы, связанные с движением летательных аппаратов, однако те же принципы можно применить к описанию других явлений, изучаемых в общей гидроаэромеханике. Здесь изложены физические законы, управляющие движениями воздуха, и концепции, необходимые для понимания механизмов возникновения подъемной силы и силы сопротивления при различных скоростях полета, включая течения с ударными волнами. На очень больших высотах (свыше 60 км) вследствие очень низкой плотности воздуха возникают некоторые изменения картины обтекания тела.

ХАРАКТЕРИСТИКИ ВОЗДУХА И ДРУГИХ ТЕКУЧИХ СРЕД

В аэродинамике принимаются во внимание такие свойства воздуха, как плотность, давление, температура и молекулярный состав.

Воздух состоит из молекул ряда химических элементов, в основном азота (78%) и кислорода (21%). Имеются также небольшие примеси аргона, углекислого газа, водорода и других газов. Число молекул в единице объема воздуха чрезвычайно велико: на уровне моря при температуре 15° С в 1 м3 содержится 2,7Ч1025 молекул. Плотность определяется как масса воздуха, содержащегося в единице объема.

Давление представляет собой силу, действующую на единицу площади. Молекулы воздуха находятся в непрерывном движении; они соударяются с ограничивающей воздух поверхностью и отражаются от нее. Сумма всех импульсов, сообщаемых молекулами, падающими на единицу площади поверхности за единицу времени, равна давлению.

Температура воздуха (или какого-либо другого газа) служит мерой средней кинетической энергии молекул (равной половине произведения массы на квадрат скорости), отнесенной к единице массы.

Важной физической характеристикой газа, зависящей только от температуры, является скорость звука. Скорость звука a /с) в воздухе можно вычислить, зная абсолютную температуру T (K), по формуле .

Связь между давлением p, плотностью r и абсолютной температурой T дается формулой p = rRT, где R – газовая постоянная, равная 287,14 м2/с2ЧК для воздуха. Из этой формулы следует закон Бойля, согласно которому при постоянной температуре p/r = const, т.е. изменение плотности прямо пропорционально изменению давления.

Изменения давления и плотности воздуха по высоте согласуются с этими законами. Давление и плотность уменьшаются, по сравнению с их значениями на уровне моря, в 2 раза на высоте 6 км, в 5 раз на высоте 12 км и в 100 раз на высоте 30 км.

В нижних слоях атмосферы температура воздуха также снижается при увеличении высоты. Стандартная температура на уровне моря составляет 288 К. Она уменьшается до 256 К на высоте 5 км и до 217 К на высоте 12 км.

Важной характеристикой движущейся среды является ее вязкость. Вязкость проявляется через свойство прилипания текучей среды к поверхности, тогда как невязкая среда свободно скользит вдоль обтекаемой поверхности. Чтобы проиллюстрировать влияние вязкости, порождающей силу, замедляющую течение (силу сопротивления), рассмотрим две большие параллельные друг другу пластины A и B (рис. 1), одна из которых движется относительно другой. Вязкая среда прилипает к каждой из пластин. Случайные движения молекул создают эффект «перемешивания», стремящегося выровнять средние скорости течения, скорость которого на пластине B равна V, а на пластине A – нулю. Результирующее распределение скоростей также приведено на рис. 1, где длина стрелок пропорциональна величине скорости в данной точке течения по высоте между пластинами. Таким образом, на движущуюся пластину B действует сила, тормозящая ее движение. Чтобы обеспечить движение пластины B при наличии торможения, к ней должна быть приложена противодействующая сила. Такая же сила стремится привести в движение пластину A.

(3.24 Кб)

Величина силы, необходимой для поддержания движения пластины B со скоростью 1 м/с (или удержания на месте неподвижной пластины A), при условии, что расстояние между пластинами равно 1 м, а площадь каждой из них – 1 м2, называется коэффициентом вязкости m. Для воздуха при температуре 0° С и давлении 1 атм m = 1,73Ч10–5 HЧc/м2. Эксперименты показывают, что коэффициент вязкости воздуха изменяется в зависимости от температуры пропорционально T0,76.

дальше



АЭРОДИНАМИКА
ХАРАКТЕРИСТИКИ ВОЗДУХА И ДРУГИХ ТЕКУЧИХ СРЕД
ФУНДАМЕНТАЛЬНЫЕ ЗАКОНЫ
Параметры течения и движущегося тела
НЕСЖИМАЕМЫЕ ТЕЧЕНИЯ
Подъемная сила
Влияние вязкости
СЖИМАЕМЫЕ ТЕЧЕНИЯ
Течения в трубах
Влияние сжимаемости
АЭРОДИНАМИЧЕСКОЕ НАГРЕВАНИЕ
Влияние вязкости
ПОЛЕТ НА БОЛЬШИХ ВЫСОТАХ
ТРУДНОСТИ ТЕОРЕТИЧЕСКОГО АНАЛИЗА
ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ
СМЕШАННЫЕ АЭРОДИНАМИЧЕСКИЕ ЯВЛЕНИЯ
Влияние нестационарности течения
Влияние ударных волн
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
09/09/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!