Вывести на печать

ИГРЫ В НОРМАЛЬНОЙ ФОРМЕ

Первый шаг при построении общей математической теории игр состоит в доказательстве того, что любую конечную игру можно свести к эквивалентной ей игре, имеющей более простую частную форму; в отличие от игры с полной информацией такие игры сопряжены с минимальным обменом информацией. Предположим, что n игроков X1, X2, ..., Xn играют в игру Г по следующим правилам. Каждый игрок Xk выбрал из множества Sk элемент xk, ничего не зная о том, какой элемент выбрал любой из остальных игроков; в качестве платежа игрок Xk получает величину Mk (x1, x2, ..., xn). Точный характер игры Г определяется множествами S1, S2, ..., Sn и n функциями платежей M1, M2, ..., Mn. Элементы множества Sk называются чистыми стратегиями игрока Xk.

Любая игра, которая может быть представлена таким образом, называется игрой с «нулевой суммой», если функции платежей удовлетворяют условию

при всех возможных выборах стратегий x1, x2, ..., xn. Смысл этого названия заключается в том, что игра не разрушает и не создает состояния, а лишь перераспределяет его между игроками. Любую игру в нормальной форме можно превратить в игру с нулевой суммой, если ввести фиктивного игрока («банк»), который не делает ходов, но получает платеж в размере, необходимом для поддержания общего баланса. В игре двух игроков с нулевой суммой условие (1) принимает вид:

Следовательно, игрок X1 выигрывает, только если игрок X2 проигрывает, и интересы игроков диаметрально противоположны. Но если число игроков больше двух, то существует возможность объединения нескольких игроков в коалицию для достижения совместными усилиями того, что они не могли достичь порознь.

Чтобы уяснить, как обычную игру можно теоретически свести к нормальной форме, нужно глубже вникнуть в то, что понимается под «стратегией» в теории игр. В самых общих чертах стратегия игрока представляет собой детальный план действий, который может быть составлен заранее, до того, как игра действительно будет сыграна, и содержит полные инструкции, необходимые для принятия любого возможного решения; решение должно учитывать всю информацию, которой располагает игрок относительно предыдущих ходов, сделанных во время игры.

В шашках или шахматах описание индивидуальной стратегии белых составило бы объемистую книгу; в ней не только указывался бы первый ход, но и перечислялись бы контрходы в ответ на любой ответный ход черных, перечислялись бы все возможные вторые ходы, ответные ходы белых на любой второй ход черных и т.д.

В «упрощенном покере» у игрока X имеется только четыре возможные стратегии. Их можно обозначить символами LL, LH, HL и HH, означающими следующее:

6LLнезависимо от извлеченной карты ставка минимальна (3 доллара);

6LH – если извлеченная карта – королева, то ставка минимальна, если король, то ставка максимальна (9 долларов);

HL – стратегия, обратная LH;

6HH – ставка всегда максимальна.

Аналогично, игрок Y располагает только четырьмя стратегиями, которые можно было бы обозначить FF, FC, CF и СС:

6FF – пропустить независимо от ставки, которую делает игрок X;

6FC – пропустить, если X делает минимальную ставку, объявить козырную масть, если X делает максимальную ставку;

CF – стратегия, обратная FC;

CC – объявить козырную масть независимо оттого, какую ставку делает X.

После того, как каждый из игроков выбрал свою стратегию, игру мог бы проводить любой беспристрастный посредник. В этом смысле платеж для каждого игрока полностью определен выбором чистых стратегий, и мы получаем требуемую нормальную форму. Игра с многочисленными ходами и в различной степени неполной информацией оказалась сведенной к простой игре, в которой у каждого игрока есть только один ход. Если имеются случайные ходы (в нашем примере с покером – это начальная сдача карт), то их делает посредник. Разумно также описать платеж, причитающийся игроку, в терминах величины, которую он рассчитывает получить. Например, если X выбирает стратегию HL, а Y стратегию CC, то X выигрывает 3 доллара, если он извлекает короля, и проигрывает 9 долларов, если он извлекает королеву. Так как предполагается, что игра ведется честно, то ожидаемый в конечном счете платеж при указанном выборе стратегий составляет

Полная матрица для нормальной формы «упрощенного покера» представлена на рис. 2. Платежи указаны для игрока X; соответствующие платежи для Y равны тем же числам, но с противоположным знаком.

(6.41 Кб)

В России при построении математической модели конфликта делают различия между коалицией действия и коалицией интересов. Коалицией действия называются те или иные коллективы, участвующие в игре и принимающие решения. Коалицией интересов называются коллективы, участвующие в игре и отстаивающие некоторые общие интересы. Кроме того, вводится понятие ситуации – результат выбора всеми коалициями действия своих стратегий.

назад



ИГР ТЕОРИЯ
ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ
ИГРЫ С ПОЛНОЙ ИНФОРМАЦИЕЙ
ИГРЫ В НОРМАЛЬНОЙ ФОРМЕ
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
27/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!