Вывести на печать

Концепция толстостенной монококовой конструкции. В годы Второй мировой войны скорость опытных самолетов стала приближаться к скорости звука, и тонкостенные монококовые конструкции перестали удовлетворять возросшим требованиям. Одним из факторов, способствовавших повышению скоростей полета, явилось создание т.н. ламинарных профилей крыла, которые имели очень низкое сопротивление. Однако преимущества ламинарных крыльев могли быть реализованы только при условии точного соблюдения требуемой формы поверхности крыла, и малейшие нарушения гладкости поверхности (выступающие заклепки или углубления для потайных заклепок) сводили к нулю все преимущества ламинарного профиля. По этой причине тонкостенные усиленные монококи оказались непригодными для создания крыла с ламинарным обтеканием для высокоскоростных самолетов.

Другим фактором, требующим точного соблюдения формы крыла и фюзеляжа высокоскоростных самолетов, является неустойчивость трансзвукового потока. В трансзвуковых течениях очень небольшие изменения формы обтекаемой поверхности могут вызвать полное изменение картины обтекания и появление скачков уплотнения, которые приводят к резкому возрастанию силы сопротивления.

Поскольку выдержать точно нужную форму поверхности, изготавливаемой из тонких пластин, очень трудно, пришлось пойти на увеличение толщины обшивки авиационных конструкций. Еще одним основанием для увеличения толщины обшивки являлась недостаточная величина строительной высоты (расстояния h на рис. 6) конструкции крыла самолета. Рассчитанные на высокие скорости полета профили крыла должны быть очень тонкими (максимальная относительная толщина крыльев для сверхзвуковых самолетов и ракет обычно составляет менее 10% хорды). Нагрузки, действующие на нижнюю и верхнюю поверхности такого крыла, очень велики, и их может выдержать только толстая обшивка.

Концепция сэндвича. Первой толстостенной конструкцией, использовавшей концепцию сэндвича (многослойной конструкции), была обшивка на истребителе «Хэвилленд Москито». В этой конструкции пространство между двумя тонкими прочными обшивками (несущими слоями) заполнено значительно более легким материалом; такая составная панель способна выдерживать более значительные изгибающие нагрузки, чем две несущие обшивки без заполнителя, соединенные вместе. Кроме того, эта многослойная конструкция остается легкой, так как заполнитель имеет небольшую плотность. В качестве примера легкой многослойной конструкции, обладающей повышенной прочностью, можно привести упаковочный картон, в котором между двумя внешними листами картона находится гофрированная бумажная прослойка. Многослойный картон обладает большей жесткостью на изгиб и прочностью, чем лист картона, соответствующий ему по весу. Важным фактором, препятствующим короблению поверхности, является способность панели выдерживать изгибающие нагрузки. Толстостенные многослойные обшивки, обладающие повышенной жесткостью на изгиб, не допускают коробления поверхности при обычных летных ситуациях и способствуют сохранению гладкой формы поверхности крыла и фюзеляжа. Несущие слои соединяются со слоем из заполнителя с помощью клея. Клепка не используется, и это обеспечивает гладкость поверхности.

Методы производства многослойных конструкций. Для производства элементов многослойных конструкций сложной формы используют несколько методов. Один из них разъясняется на рис. 12. Изготавливают пресс-форму, точно воспроизводящую нужную форму многослойного элемента. Слои многослойной конструкции смазывают синтетическим клеем и помещают в пресс-форму. Обшивка многослойной конструкции накрывается оболочкой из герметического материала, например из прочной резины, и пресс-форма плотно закрывается крышкой. Внутрь оболочки под давлением нагнетают горячий пар, и под действием высокой температуры и равномерного давления пара клей отвердевает и надежно соединяет несущие слои с наполнителем. Такая формовочная технология может использоваться для изготовления конструктивных элементов сложной формы с искривленными стенками переменной толщины.

(25.69 Кб)

Во время Второй мировой войны синтетические клеи и технология склеивания слоевых конструкций нашли широкое применение в авиационной промышленности. Эта технология обеспечивала прочное соединение таких разнородных материалов, как древесина и металлы, и позволила наладить дешевое производство обшивок с гладкими поверхностями.

назад   дальше



АВИАЦИОННО-КОСМИЧЕСКИЕ КОНСТРУКЦИИ
ОСНОВНЫЕ ОСОБЕННОСТИ КОНСТРУКТИВНЫХ СХЕМ САМОЛЕТОВ
Аэродинамические характеристики
Весовые характеристики
Конструктивные соображения
АВИАЦИЯ ДО ПЕРВОЙ МИРОВОЙ ВОЙНЫ
Расчалочный моноплан
Расчалочный биплан
Авиационные материалы
Проблема лобового сопротивления
КАРКАСНЫЕ КОНСТРУКЦИИ
Сварные фюзеляжи из стальных трубок
Фюзеляжи с разъемными соединениями элементов
Обшивка
Крылья биплана
Моноплан с высокорасположенным крылом
Свободнонесущий моноплан
МОНОКОКОВАЯ КОНСТРУКЦИЯ
Принцип монокока
Тонкостенные монококи
Тонкостенная балка
Компоновка конструктивных элементов в тонкостенных монококах
Концепция толстостенной монококовой конструкции
Концепция сэндвича
Методы производства многослойных конструкций
Разрушение многослойной конструкции
Другие типы толстостенных оболочек
СВЕРХЗВУКОВЫЕ САМОЛЕТЫ, КОСМИЧЕСКИЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ И БАЛЛИСТИЧЕСКИЕ РАКЕТЫ
Примеры тонкостенных оболочек
АЭРОКОСМИЧЕСКИЕ МАТЕРИАЛЫ
АЭРОКОСМИЧЕСКИЕ КОНСТРУКЦИИ
Транспортные самолеты и истребители
КК «Шаттл»
Космические станции
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
26/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!