Вывести на печать

БИОМЕДИЦИНСКАЯ ИНЖЕНЕРИЯ, разработка и применение технических устройств для биологических и медицинских исследований. Это область совместной работы технологов, биологов и врачей, направленной на приобретение фундаментальных знаний о физических характеристиках и функционировании биологических материалов. Полученные знания используются этими учеными для того, чтобы создавать устройства, делать операции и разрабатывать новые методики, способствующие улучшению здоровья и качества жизни людей.

В числе достижений биомедицинской инженерии, ставших возможными благодаря такому сотрудничеству, – диализные аппараты, предназначенные для замещения больных и плохо работающих почек; протезы тазобедренного и коленного суставов; материалы и технологии для операций на сердце и кровеносных сосудах; искусственное сердце.

ОСНОВНЫЕ ОБЛАСТИ ИССЛЕДОВАНИЙ

Компьютерное моделирование в биомеханике. Роль компьютерного моделирования в биомедицинской инженерии трудно переоценить. На основе количественных данных исследований программист создает модели биологических процессов и структур; соответствующие программы могут предсказать поведение биологической структуры, системы или организма в зависимости от внешних воздействий, лечения, развития болезни или старения.

Компьютерные модели способны приблизительно описать механику работы различных частей тела, например бедренной кости в области тазобедренного сустава, или же они могут описать, каким образом замена головки берцовой кости на искусственную повлияет на функционирование кости в целом. Можно использовать моделирование и для анализа возможных изменений в конструкции протеза, а также связанного с ними риска для больного. Однако важнее всего то, что компьютерное моделирование позволяет избежать проведения экспериментов на людях.

Биоматериалы и биомеханика ткани. В отличие от специалистов по моделированию многие инженеры-биомедики имеют дело непосредственно с биологическими тканями – мышцами, связками, сухожилиями – и даже клеточными мембранами. Чаще всего их работа связана с измерением физических параметров (таких, как прочность, жесткость, упругость) или функциональных показателей (электрической активности, количеств выделяемого вещества, осмотического давления в клетках и т.п.). Подобные измерения важны не только для фундаментальной науки; они создают основу для практически важных разработок, одним из примеров которых служит искусственное сердце.

Биомеханика изучает в основном механические свойства опорно-двигательного аппарата. Фундаментальные исследования в этой области послужили базой для разработки искусственных суставов, которые применяются для замены суставов, необратимо поврежденных в результате тяжелого артрита или артроза. Это изобретение, уже облегчившее страдания тысячам людей, может быть, самое впечатляющее достижение биомедицинской инженерии.

Имплантация (эндопротезирование). В 1937 пригодными для имплантации были признаны три типа металлических материалов – нержавеющая сталь марки 316-L, хромо-кобальто-молибденовый сплав (виталлий) и титан. Эти материалы достаточно прочны, долговечны, устойчивы к коррозии и не вызывают серьезных воспалительных реакций в организме.

С их появлением в практику травматологии быстро вошли разнообразные фиксаторы (стержни, пластинки, винты и гвозди), предназначенные для закрепления костей в правильном положении до тех пор, пока не восстановится костная ткань. Большинство подобных фиксаторов было разработано в те годы, когда механика костей и мягких тканей была изучена слабо и отсутствовали данные о том, каким нагрузкам подвергается имплантат в организме. Современные фиксаторы для срастания переломов значительно эффективнее; возникающие в них напряжения и деформации рассчитываются заранее. Благодаря современным фиксирующим устройствам пожилой человек с переломом шейки бедра часто снова начинает ходить практически через неделю после травмы.

Несмотря на огромный успех в области эндопротезирования тазобедренного и коленного суставов, срок службы этих протезов ограничивался примерно 10 (максимум 20) годами. Это определялось двумя факторами: ослаблением креплений элементов протеза и недостатками метилметакрилатного костного цемента. Поиск более надежных способов фиксации дал свои результаты: появились металлические протезы как с пористой поверхностью, так и с покрытием из фосфата кальция в форме гидроксиапатита, который имитирует поверхность кости. Благодаря пористой структуре наружного слоя протеза кость врастает в поверхность протеза и стабилизирует его до конца жизни пациента. Покрытие металлического протеза гидроксиапатитом имитирует нормальную кость, что способствует более физиологичному и долговечному соединению протеза с костью.

дальше



БИОМЕДИЦИНСКАЯ ИНЖЕНЕРИЯ
ОСНОВНЫЕ ОБЛАСТИ ИССЛЕДОВАНИЙ
Компьютерное моделирование в биомеханике
Биоматериалы и биомеханика ткани
Биомеханика
Имплантация (эндопротезирование)
Биоэлектрическая инженерия
ИСТОРИЧЕСКИЙ ОЧЕРК
Рождение биомеханики
Разработка приемной полости протеза
Протезы тазобедренного и коленного суставов
Искусственное сердце

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
18/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!