Вывести на печать

МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ, раздел молекулярной физики, рассматривающий многие свойства веществ исходя из представлений о быстром хаотическом движении огромного числа атомов и молекул, из которых эти вещества состоят. Молекулярно-кинетическая теория концентрирует внимание не на различиях между отдельными типами атомов и молекул, а на том общем, что имеется в их поведении. Еще древнегреческие философы, первыми высказывавшие атомистические идеи, полагали, что атомы находятся в непрерывном движении. Количественный анализ этого движения попытался дать Д.Бернулли в 1738. Принципиальный вклад в развитие молекулярно-кинетической теории был сделан в период с 1850 по 1900 Р.Клаузиусом в Германии, Л.Больцманом в Австрии и Дж.Максвеллом в Англии. Эти же физики заложили основы статистической механики – более абстрактной дисциплины, занимающейся изучением того же предмета, что и молекулярно-кинетическая теория, но без построения детальных, а потому менее общих моделей. Углубление статистического подхода в начале 20 в. связано главным образом с именем американского физика Дж.Гиббса, который считается одним из основоположников статистической механики. Революционные идеи были привнесены в эту науку также М.Планком и А.Эйнштейном. В середине 1920-х годов классическая механика окончательно уступила место новой, квантовой, механике. Она дала импульс развитию статистической механики, не прекращающемуся до сих пор.

МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ТЕПЛОТЫ

Известно, что нагретые тела, остывая, отдают часть своей теплоты более холодным телам. До 19 в. считалось, что теплота – это некая жидкость (теплород), перетекающая от одного тела к другому. Одним из главных достижений физики 19 в. стало то, что теплота стала рассматриваться просто как одна из форм энергии, а именно – кинетическая энергия атомов и молекул. Такое представление распространяется на все вещества – твердые, жидкие и газообразные. Частицы нагретого тела движутся быстрее, чем холодного. Например, солнечные лучи, нагревая нашу кожу, заставляют ее молекулы колебаться быстрее, и мы ощущаем эти колебания как тепло. На холодном ветру молекулы воздуха, сталкиваясь с молекулами поверхности нашего тела, отбирают у них энергию, и мы ощущаем холод. Во всех случаях, когда тепло передается от одного тела к другому, движение частиц в первом из них замедляется, во втором ускоряется, а энергия частиц второго тела увеличивается ровно на столько, на сколько уменьшается энергия частиц первого.

Многие знакомые нам тепловые явления можно непосредственно объяснить с помощью молекулярно-кинетической теории. Поскольку теплота порождается беспорядочным движением молекул, можно повышать температуру тела (увеличивать запас теплоты в нем) не за счет подвода тепла, а, например, с помощью трения: молекулы трущихся поверхностей, соударяясь друг с другом, начинают двигаться более интенсивно, и температура поверхностей повышается. По той же причине нагревается кусок железа, когда по нему бьют молотом. Еще одно тепловое явление – увеличение давления газов при нагревании. С повышением температуры скорость движения молекул увеличивается, они чаще и сильнее ударяются о стенки сосуда, в котором газ находится, что проявляется в повышении давления. Постепенное испарение жидкостей объясняется тем, что их молекулы одна за другой переходят в воздух, при этом первыми улетучиваются самые быстрые из них, а у тех, которые остаются, энергия в среднем оказывается меньше. Вот почему при испарении жидкостей с влажной поверхности она охлаждается. Математический аппарат, построенный на молекулярно-кинетической теории, позволяет анализировать эти и многие другие эффекты, исходя из уравнений движения молекул и общих положений теории вероятностей.

Предположим, что мы подняли резиновый мяч на некоторую высоту, а затем выпустили его из рук. Мяч ударится об пол, а затем несколько раз подскочит, каждый раз на меньшую высоту, чем перед этим, поскольку при ударе часть его кинетической энергии превращается в теплоту. Такой удар называется частично упругим. Кусок свинца совсем не отскакивает от пола – при первом же ударе в теплоту превращается вся его кинетическая энергия, и температура куска свинца и пола слегка повышается. Такой удар называют абсолютно неупругим. Удар, при котором вся кинетическая энергия тела сохраняется, не превращаясь в тепло, называется абсолютно упругим.

В газах при столкновении атомов и молекул друг с другом происходит лишь обмен их скоростями (мы не рассматриваем здесь случай, когда в результате столкновений частицы газа взаимодействуют – вступают в химические реакции); суммарная кинетическая энергия всей совокупности атомов и молекул не может при этом превратиться в теплоту, поскольку она уже ею является. Непрерывное движение атомов и молекул вещества называется тепловым движением. В жидкостях и твердых телах картина более сложная: помимо кинетической энергии необходимо учитывать и потенциальную энергию взаимодействия частиц.

дальше



МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ
МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ТЕПЛОТЫ
Тепловое движение в воздухе
Давление газа или пара
Закон Бойля – Мариотта
Закон Дальтона
Скорости молекул
Закон Авогадро
Средняя длина свободного пробега
РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ ПО СКОРОСТЯМ
Тепловое равновесие
Газовые законы
Экспериментальная проверка распределения Максвелла
Броуновское движение
Теплоемкость газа или пара
Давление насыщенного пара
КОЛЕБАНИЯ АТОМОВ В ТВЕРДЫХ ТЕЛАХ И ЖИДКОСТЯХ
ТЕПЛОПРОВОДНОСТЬ ГАЗА
ВЯЗКОСТЬ ГАЗА
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
24/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!