Вывести на печать

ДЕТЕКТОРЫ ЧАСТИЦ, приборы для регистрации атомных и субатомных частиц. Чтобы частица была зарегистрирована, она должна взаимодействовать с материалом детектора. Простейшие детекторы («счетчики») регистрируют только сам факт попадания частицы в детектор; более сложные позволяют также определить тип частицы, ее энергию, направление движения и т.д.

Взаимодействие с материалом детектора чаще всего сводится к процессу ионизации – отрыву электронов от некоторых атомов материала детектора, в результате чего они приобретают электрический заряд. Регистрируется либо непосредственно ионизация, либо связанные с ней явления – испускание света, а также фазовые или химические превращения.

Взаимодействие частиц с веществом. Проходя сквозь вещество, частица сталкивается с атомами этого вещества. Число столкновений зависит в основном от электрического заряда и скорости частицы. Масса частицы и природа самого вещества играют лишь второстепенную роль. При каждом столкновении существует некоторая вероятность того, что атом потеряет электрон и превратится в положительно заряженный ион. Поэтому частица, движущаяся в веществе, оставляет за собой след из электронов и положительных ионов. Этот процесс, называемый ионизацией, схематически изображен на рис. 1. Например, очень быстрый протон (скорость которого близка к скорости света) при движении в воде оставляет на каждом сантиметре пути примерно 70 000 пар электронов и положительных ионов. Одновременно с ионизацией атомы при столкновении могут излучать свет или приобретать импульс, что ведет к нагреву вещества и возникновению в нем разного рода дефектов. Любое из этих явлений может использоваться в детекторе частиц.

(14.87 Кб)

ТИПЫ ДЕТЕКТОРОВ

Ионизационные приборы. Действие ионизационной камеры основано на сборе (в форме электрического тока) ионов, образующихся при прохождении через камеру заряженных частиц. Схема прибора представлена на рис. 2. Электрический ток, возникающий в результате ионизации, дается выражением

i = nq/t,

где n число образовавшихся ионов, q – электрический заряд каждого иона, а tвремя, необходимое для того, чтобы собрать ионы. Ток можно преобразовать в падение напряжения, разряжая заряженный им конденсатор или пропуская его через резистор. Ток, создаваемый одной частицей, составляет обычно доли микроампера, а падение напряжения измеряется милливольтами. Полные потери энергии частицы при прохождении ее через камеру даются формулой

E = nk,

где n – число образованных ионов, которое можно определить по току или падению напряжения в камере, а k – средняя энергия, необходимая для образования одной пары ионов. Величина k для обычных газов составляет около 30 эВ (1 эВ есть энергия, которую приобретает электрон, проходя ускоряющую разность потенциалов 1 В.) Образование ионных пар – случайный процесс, а поэтому возможны флуктуации числа n порядка . Все измеренные величины, основанные на показаниях счетчика, тоже будут обнаруживать флуктуации, и поэтому точность таких измерений повышается с увеличением их длительности. .

(11.24 Кб)

Основное требование к чувствительному веществу ионизационных приборов состоит в том, чтобы ионы, создаваемые излучением, с большой вероятностью достигали собирающих электродов. Кроме того, это вещество должно обладать высоким удельным сопротивлением, чтобы в нем не было других токов, кроме связанных с ионизацией. Для этих целей хорошо подходят газы, особенно инертные, такие, как гелий и аргон, но можно использовать и другие диэлектрики. Твердотельными аналогами ионизационной камеры являются полупроводниковые детекторы. Подобный прибор с pn-переходом показан на рис. 3. Для создания перехода в полупроводник (обычно кристалл германия или кремния, по удельному сопротивлению занимающих промежуточное положение между металлами и диэлектриками) вводят небольшие количества определенных примесей. Благодаря этому в области перехода возникает электрическое поле, а при наложении дополнительного внешнего поля образуется обедненная область, в которой отсутствуют свободные носители заряда, необходимые для создания электрического тока. Но если через обедненную область проходит ионизующая частица, в ней возникают свободные носители (электроны и «дырки»), движение которых и создает ток. Средняя энергия, необходимая для образования пары носителей заряда в полупроводниковом детекторе, составляет примерно 3 эВ, тогда как в газовом – 30 эВ. Следовательно, при одинаковых потерях энергии в полупроводниковом детекторе возникает электрический сигнал, в 10 раз превышающий сигнал ионизационной камеры. Соответственно этому возрастает и точность, с которой измеряются потери энергии.

(13.26 Кб)

Полупроводниковые детекторы во многом аналогичны полупроводниковым диодам, которые тоже представляют собой полупроводниковые приборы с pn-переходом. Однако их конструкция имеет свои особенности. Один из широко распространенных типов детекторов, поверхностно-барьерный, изготавливается путем нанесения тонкого слоя золота на кремний или германий. Он имеет вид круглой пластинки диаметром около 1 см с обедненным слоем толщиной менее 1 мм. Такие детекторы применяются для измерения полной энергии сильно ионизующих частиц, например альфа-частиц и протонов с низкой энергией. Благодаря большому сигналу, отвечающему одному акту ионизации, такие приборы измеряют энергию частиц точнее детекторов всех других типов. Кроме того, благодаря небольшим размерам и простоте в обращении они идеально подходят для космических экспериментов.

Еще один тип полупроводникового детектора – литий-дрейфовый детектор с pin-переходом – изготавливается методом диффузии ионов лития в полупроводниковый материал (германий или кремний). Это дает возможность получать обедненные области толщиной в несколько сантиметров и создавать детекторы значительно больших размеров, чем поверхностно-барьерные. Такие детекторы применяются для регистрации частиц с большими энергиями, а также рентгеновского и гамма-излучения, сравнительно слабо взаимодействующего с веществом.

дальше



ДЕТЕКТОРЫ ЧАСТИЦ
Взаимодействие частиц с веществом
ТИПЫ ДЕТЕКТОРОВ
Ионизационные приборы
Пропорциональные счетчики и счетчики Гейгера
Сцинтилляционные и черенковские счетчики
Детекторы нейтронов и гамма-квантов
Камеры Вильсона и пузырьковые камеры
Ядерные эмульсии
Искровые камеры
Твердотельные трековые детекторы
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
29/03/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!