Вывести на печать

Механизация арифметических вычислений. С развитием общества росла и потребность в более быстрых и точных вычислениях. Эта потребность вызвала к жизни четыре замечательных изобретения: индо-арабские числовые обозначения, десятичные дроби, логарифмы и современные вычислительные машины.

На самом деле простейшие счетные устройства существовали до появления современной арифметики, ибо в древности элементарные арифметические операции производились на абаке (в России с этой целью использовались счеты). Простейшим современным вычислительным устройством можно считать логарифмическую линейку, представляющую собой две скользящие одна вдоль другой логарифмические шкалы, что позволяет производить умножение и деление, суммируя и вычитая отрезки шкал. Изобретателем первой механической суммирующей машины принято считать Б.Паскаля (1642). Позднее в том же столетии Г.Лейбниц (1671) в Германии и С.Морленд (1673) в Англии изобрели машины для выполнения умножения. Эти машины стали предшественницами настольных вычислительных устройств (арифмометров) 20 в., позволявших быстро и точно производить операции сложения, вычитания, умножения и деления.

В 1812 английский математик Ч.Бэббидж приступил к созданию проекта машины для вычисления математических таблиц. Хотя работа над проектом продолжалась долгие годы, она так и осталась незавершенной. Тем не менее проект Бэббиджа послужил стимулом к созданию современных электронных вычислительных машин, первые образцы которых появились около 1944. Быстродействие этих машин поражало воображение: с их помощью за минуты или часы удавалось решить задачи, ранее требовавшие многих лет непрерывных вычислений даже с применением арифмометров.

Суть дела можно пояснить на примере конкретной арифметической задачи, например, вычисления числа p (отношения длины окружности к ее диаметру). Первые систематические попытки вычисления p встречаются у Архимеда (ок. 240 до н.э.). Используя весьма несовершенную систему счисления, он после долгих трудов сумел вычислить p с точностью, эквивалентной в нашей современной системе счисления двум знакам после запятой. Используя метод Архимеда, Л.ван Цейлен (1540–1610), посвятив этому значительную часть жизни, сумел вычислить p с точностью 35 знаков после запятой. В 1873 после пятнадцати лет работы У.Шенкс получил значение p с 707 знаками, но позднее выяснилось, что начиная с 528-го знака в его вычисления вкрались ошибки. В 1958 компьютер фирмы ИБМ вычислил за 40 секунд 707 знаков числа p и, продолжая далее вычисления, получил за 100 минут 10000 знаков. См. также КОМПЬЮТЕР; ЧИСЛО p.

Целые положительные числа. Основой наших представлений о числах являются интуитивные понятия множества, соответствия между множествами и бесконечной последовательности различимых знаков или звуков. Знакомая всем нам последовательность символов 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... есть не что иное, как бесконечная последовательность различимых знаков и бесконечная последовательность различимых звуков (или слов) «один», «два», «три», «четыре», «пять», «шесть», «семь», «восемь», «девять», «десять», «одиннадцать», «двенадцать», ..., соответствующих определенным символам. Любое множество, все элементы которого можно поставить во взаимно однозначное соответствие с элементами некоторого начального сегмента нашей бесконечной последовательности символов, называется конечным множеством. При этом на число элементов множества указывает последний символ сегмента. Например, множество предметов, которые можно поставить во взаимно однозначное соответствие с начальным сегментом 1, 2, 3, 4, 5, 6, 7, 8, является конечным множеством, содержащим 8 («восемь») элементов. Символ 8 указывает на «число» предметов в исходном множестве. Это число есть символ, или ярлык, приписываемый данному множеству. Этот же ярлык приписывается всем тем и только тем множествам, которые могут быть поставлены во взаимно однозначное соответствие с данным множеством. Однозначное определение ярлыка для любого заданного конечного множества называется «пересчитыванием» элементов данного множества, а сами ярлыки получили название натуральных или целых положительных чисел (см. также ЧИСЛО; МНОЖЕСТВ ТЕОРИЯ).

Пусть A и B – два конечных множества, не имеющие общих элементов, и пусть A содержит n элементов, а B содержит m элементов. Тогда множество S, состоящее из всех элементов множеств A и B, взятых вместе, является конечным множеством, содержащим, скажем, s элементов. Например, если А состоит из элементов {a, b, c}, множество В – из элементов {x, y}, то множество S = A + B и состоит из элементов {a, b, c, x, y}. Число s называется суммой чисел n и m, и мы записываем это так: s = n + m. В этой записи числа n и m называются слагаемыми, операция нахождения суммы – сложением. Символ операции «+» читается как «плюс». Множество P, состоящее из всех упорядоченных пар, в которых первый элемент выбран из множества A, а второй – из множества B, является конечным множеством, содержащим, скажем, p элементов. Например, если, как и прежде, A = {a, b, c}, B = {x, y}, то P = AґB = {(a,x), (a,y), (b,x), (b,y), (c,x), (c,y)}. Число p называется произведением чисел a и b, и мы записываем это так: p = aґb или p = aЧb. Числа a и b в произведении называются множителями, операция нахождения произведения – умножением. Символ операции ґ читается как «умноженное на».

Можно показать, что из этих определений следуют приводимые ниже фундаментальные законы сложения и умножения целых чисел:

– закон коммутативности сложения: a + b = b + a;

– закон ассоциативности сложения: a + (b + c) = (a + b) + c;

закон коммутативности умножения: aґb = bґa;

– закон ассоциативности умножения: aґ(bґc) = (aґb)ґc;

– закон дистрибутивности: aґ(b + c)= (aґb) + (aґc).

Если a и b два положительных целых числа и если существует положительное целое число c, такое, что a = b + c, то мы говорим, что a больше b (это записывается так: a > b), или что b меньше a (это записывается так: b < a). Для любых двух чисел a и b выполняется одно из трех соотношений: либо a = b, либо a > b, либо a < b.

Первые два фундаментальных закона говорят о том, что сумма двух или большего числа слагаемых не зависит от того, как они сгруппированы и в каком порядке они расположены. Аналогично, из третьего и четвертого законов следует, что произведение двух или большего числа множителей не зависит от того, как сгруппированы множители и каков их порядок. Эти факты известны как «обобщенные законы коммутативности и ассоциативности» сложения и умножения. Из них следует, что при написании суммы нескольких слагаемых или произведения нескольких множителей порядок слагаемых и множителей несуществен и можно опустить скобки.

В частности, повторная сумма a + a + ... + a из n слагаемых равна nґa. Повторное произведение aґaґ ... ґa из n множителей условились обозначать an; число a называется основанием, а число nпоказателем повторного произведения, само повторное произведение – n-й степенью числа a. Эти определения позволяют установить следующие фундаментальные законы для показателей степени:

Еще одно важное следствие из определений: aґ1 = a для любого целого числа a, причем 1 – единственное целое число, обладающее этим свойством. Число 1 называется единицей.

назад   дальше



АРИФМЕТИКА
Краткая история арифметики
Механизация арифметических вычислений
Целые положительные числа
Делители целых чисел
Положительные рациональные числа
Положительные действительные числа
Индо-арабская система счисления
Названия чисел
Сложение
Вычитание
Умножение
Деление
Дроби
Квадратный корень
Кубический корень
Алгоритм Евклида
Проверка
Проценты
Арифметика приближенных чисел
Логарифмы
Литература

Дополнительные опции

Популярные рубрики:

Страны мира Науки о Земле Гуманитарные науки История Культура и образование Медицина Наука и технология


Добавьте свои работы

Помогите таким же студентам, как и вы! Загрузите в Интернет свои работы, чтобы они стали доступны всем! Сделать это лучше через платформу BIBLIOTEKA.BY. Принимаем курсовые, дипломы, рефераты и много чего еще ;- )

Опубликовать работы →

Последнее обновление -
23/04/2024

Каждый день в нашу базу попадают всё новые и новые работы. Заходите к нам почаще - следите за новинками!

Мобильная версия

Можете пользоваться нашим научным поиском через мобильник или планшет прямо на лекциях и занятиях!